Problem 1: Find $\frac{\partial z}{\partial x}$ if z is defined implicitly as a function of x and y by the equation

$$x^4 + y^4 + z^4 + 8xyz = 100$$

- (a) $-\frac{x^3 + 2yz}{z^3 + 2xy}$ (b) $-\frac{x^4 + 2yz}{y^4 + 2xy}$ (c) $-\frac{x^2 + 2yz}{z^2 + 2xy}$ (d) $\frac{x^3 + 2yz}{z^3 + 2xy}$ (e) $-\frac{x^3 + 8xz}{z^3 + 8xy}$

Problem 2: If $z = e^x \sin y$, let z be a function of s and t via substitution where $x = st^2$ and $y = s^2 t$. Find $\frac{\partial z}{\partial s}$ at s = 0 and t = 1. (a) 0 (b) 2

(c) 1

- (d) -1
- (e) -2

Problem 3: If $f(x,y) = xe^y$, find $\nabla f(1,0)$. (a) $\langle 1,1 \rangle$ (b) $\langle 1,0 \rangle$ (c) $\langle 0,1 \rangle$

- (d) $\langle 2, 1 \rangle$
- (e) $\langle 1, 2 \rangle$

Problem 4: Find the maximum rate of change of $f(x, y, z) = \frac{x^2}{2} + 2\sin y + z^2$ at (1, 0, -1).

(a) 3

(b) 2

Problem 5: Find the directional derivative of the function $f(x,y,z) = \sqrt{xyz}$ at (6,3,2) in the direction $\vec{v} = \langle 2, -1, -2 \rangle$. Note \vec{v} has length 3.

(a) -1

(b) 1

(c) 2

(d) 3

(e) 6

Problem 6: Find the unit vector in the direction of the maximum rate of change of f(x, y, z) = $x^2 - y^2 - z^2$ at (3, -2, -6). (a) $\frac{1}{7}\langle 3, 2, 6 \rangle$ (b) $\frac{1}{7}\langle 3, -2, -6 \rangle$ (c) $\frac{1}{7}\langle 3, -2, 6 \rangle$ (d) $\frac{1}{7}\langle -3, -2, 6 \rangle$ (e) $\frac{1}{7}\langle -3, 2, -6 \rangle$

Problem 7: Let $f(x, y, z) = x^4 + 2xy + y^4 + xz + z^3$ and g(x, y, z) = 2x + 3y + 5z. The surfaces f(x,y,z) = 9 and g(x,y,z) = 18 intersect in a curve. The point (0,1,2) lies on the intersection curve. Which vector below is tangent to the intersection curve at this point?

- (a) $\langle -16, 4, 4 \rangle$
- (b) (0, 1, 2)
- (c) $\langle 3, -2, 0 \rangle$
- (d) (0, 1, 3)
- (e) $\langle 4, 4, -12 \rangle$

Problem 8: Find the volume of the solid S that is bounded above by $z = 16 - 3x^2 - y$ and lies above the rectangle $[0,1] \times [0,2] = \{0 \le x \le 1; \ 0 \le y \le 2\}$ in the xy-plane. You may assume $z \ge 0$ over this rectangle.

(a) 28

(b) 16

(c) 32

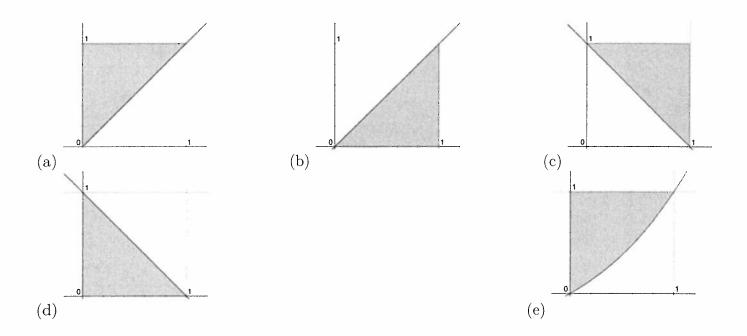
- (d) 18
- (e) -2

Problem 9: Which iterated integral below gives $\iint_D x y \ dA$ where D is the region bounded by the line x = y - 1 and the parabola $x^2 = 2y + 6$. (a) $\int_{-2}^{4} \int_{\frac{x^2 - 6}{2}}^{x+1} xy \, dy \, dx$ (b) $\int_{-1}^{5} \int_{-\sqrt{2y+4}}^{y-1} xy \, dx \, dy$ (c) $\int_{-1}^{5} \int_{y-1}^{\sqrt{2y+4}} xy \, dx \, dy$

(d) $\int_{0}^{4} \int_{0}^{\frac{x^2-6}{2}} x y \, dy \, dx$

(e) $\int_{-1}^{5} \int_{-2}^{4} x y \, dx \, dy$

Problem 10: For which shaded region D below is $\int_{\mathbb{R}} \int e^{\frac{x}{y}} dA$ evaluated by the iterated integral $\int_{0}^{1} \int_{0}^{1} e^{\frac{x}{y}} dy dx?$



Problem 11: Let $f(x,y) = x^2y + xy^2 + 3xy$. Find the critical points of f and tell what type each one is.

Problem 12: Suppose that (1,1) is the only critical point of the function $f(x,y) = 2x - 2xy + y^2 + 1$. Find the absolute maximum value of the function f(x,y) on the rectangle $R = [0,2] \times [0,3] = \{(x,y) \mid 0 \le x \le 2, \ 0 \le y \le 3 \}$.

Problem 13: Find the maximum and minimum values of f(x, y, z) = 2x - z subject to $x^2 + 10y^2 + z^2 = 5$ assuming they exist.

- 1. Find f_{yy} for $f(x,y) = \int_{y}^{x} e^{-t^2} dt$.

- (a) $2ye^{-y^2}$ (b) 0 (c) $-2ye^{-y^2}$ (d) ye^{-y^2} (e) $-ye^{-y^2}$ I

- 2. Let $H = xe^{y-z^2}$, x = 2uv, y = u v and z = u + v. Find $\frac{\partial H}{\partial u}$ when u = 3 and v = -1.
 - (a) 16
- (b) 36
- (c) 3
- (d) -1
- (e) 2

- 3. Let $f(x,y,z) = x\sin(yz)$. Find the directional derivative at (1,3,0) in the direction
 - (a) -2 (b) 2
- (c) 1
- (d) 3
- (e) -3

- 4. Find the maximum rate of change of $f(x, y) = \sin(xy)$ at (1, 0).
- (b) -1
- (c) 0
- (d) cos 1
- (e) sin 1

- Ab. Suppose that (1,-1) is a critical point of a smooth function f(x,y) with continuous second derivatives, $f_{xx}(-1,1) = 3$, $f_{xy}(-1,1) = 2$ and $f_{yy}(-1,1) = 2$. What can you say
 - (a) a local minimum
- (b) a saddle point
- (c) a local maximum

- (d) no information
- (e) absolute maximum
- $\triangle 6$. Find an equation of the tangent plane at the point (3, -1, 2) to the ellipsoid

$$\frac{x^2}{9} + y^2 + \frac{z^2}{4} = 3.$$

(a) $\frac{2}{3}x - 2y + z - 6 = 0$

(b) $\frac{2}{3}x + 2y + z - 6 = 0$

(c) $\frac{2}{3}x - 2y + z + 6 = 0$

- (d) $\frac{3}{x} y + 2z 6 = 0$
- (e) $\frac{3(x-3)}{2} = \frac{y+1}{-2} = z-2$
- A7. Find the volume of the solid that lies under hyperbolic paraboloid $z = 4 + x^2 y^2$ and above the square $R = [-1, 1] \times [0, 2] = \{(x, y) \mid -1 \le x \le 1, 0 \le y \le 2\}.$
 - (b) 4
- (d) 2
- (e) 1
- A8. If $D = \{(x,y) \mid x \ge 0, y \ge 0, x^2 + y^2 \le 1\}$, find the integral $\int \int_D \sqrt{1 y^2} dx dy$. (Hint:
 - (a) $\frac{2}{3}$
- (b) $\frac{1}{3}$
- (c) $\frac{1}{2}$
- (d) $\frac{\pi}{2}$

Blid Chalit Robbins

- 9 (i) Find the points on the sphere $x^2 + y^2 + z^2 = 9$ where the tangent plane is parallel to the plane 2x y + 2z = 99.
 - (ii) Find equations of normal lines to the sphere $x^2 + y^2 + z^2 = 9$ at points derived in part (i) above.
- () Solute maximum and absolute minimum values of f(x,y)=2x-y on the domain $D=\{(x,y) \mid x^2+\frac{y^2}{4}\leq 2\}$.
- Evaluate the iterated integral $\int_0^3 \int_{-\sqrt{9-y^2}}^0 x^2 y dx dy$ by converting to polar coordinates.

- 1. Use a double integral to find the area enclosed by one loop of the rose $r = 2\cos 3\theta$.
 - $(\underline{\mathbf{a}}) \frac{\pi}{3}$
- (b) 4π
- (c) $\frac{\pi}{2}$
- (d) 3π
- (e) 6π
- 2. Find the volume of the solid bounded by the plane z=0 and the paraboloid $z=4-x^2-y^2$.
 - $(\underline{a}) 4\pi$
- (b) $\frac{\pi}{2}$
- (c) 8π
- (d) $\frac{\pi}{4}$
- (e) 2π
- Find the maximum value of f(x, y, z) = xyz subject to $x^2 + 2y^2 + 3z^2 = 6$.
- (b) 1
- (c) $-\frac{2}{\sqrt{3}}$ (d) 0
- (e) 6
- . Find the maximum volume of a rectangular box such that the sum of lengths of its 12
 - (a) 8
- (b) 12
- (c) $(12)^3$
- (d) 1
- (e) 0
- Find the volume of the solid bounded by the surface z=6-xy and the plane x=2, $x=-2,\ y=0,\ y=3$ and z=0.
- (a) 72
- (b) 36
- (c) 6
- (d) 3
- (e) 0
- . Find $\int \int_D \frac{2y}{x^2+1} dA$ where $D=\{(x,y) \mid 0 \le x \le 1, 0 \le y \le \sqrt{x}\}.$
 - (a) $\frac{1}{2} \ln 2$
- (b) ln 2

- (c) 1 (d) 0 (e) $-\frac{1}{2} \ln 2$

7 **B.** Find $\iint_D 2xydA$, where D is the triangular region with vertices (0,0), (1,2) and (0,3). (a) $\frac{7}{4}$ (b) $\frac{4}{7}$ (c) 2

- (d) 3
- (e) 0

Evaluate the integral by reversing the order of integration $\int_0^4 \int_{\sqrt{y}}^2 \sqrt{x^3 + 1} dx dy$

- (a) $\frac{52}{9}$ (b) 4
- (c) $\frac{26}{9}$ (d) $\frac{26}{3}$ (e) 2

Find $\frac{\partial z}{\partial x}$ if $x^4 + y^4 + z^4 + 4xyz = 100$. (a) $-\frac{x^3 + yz}{z^3 + xy}$ (b) $\frac{x^3 + yz}{z^3 + xy}$ (c) $-\frac{z^3 + xy}{x^3 + yz}$ (d) $-\frac{z^3 + xy}{x^3 + yz}$ (e) 100y

- Let E be the largest rectangle box with edges parallel to axes that can be inscribed in the ellipsoid $9x^2 + 36y^2 + 4z^2 = 108$. Find the volume of E. (Hint: the box intersects all octants.)
- Find the maximum and minimum values of f(x, y, z) = yz + xy subject to constraints xy = 1 and $y^2 + z^2 = 1$.
- Evaluate the integral $\int_0^8 \int_{y^{\frac{1}{3}}}^2 e^{x^4} dx dy$.