MATH 20550: Calculus III Practice Exam 3

Multiple Choice Problems

1. Find moment about the yz plane of the solid E bounded by the parabolic cylinder $z = 1 - y^2$ and the planes x + z = 1, x = 0 and z = 0 with density $\rho(x, y, z)$.

(a) $\int_{-1}^{1} \int_{0}^{1-y^{2}} \int_{0}^{1-z} x\rho(x, y, z) dx dz dy$ (b) $\int_{-1}^{1} \int_{0}^{1-y^{2}} \int_{0}^{1-z} y z\rho(x, y, z) dx dz dy$ (c) $\int_{0}^{1} \int_{0}^{1-y^{2}} \int_{0}^{1-z} x\rho(x, y, z) dx dz dy$ (d) $\int_{-1}^{1} \int_{0}^{1-y^{2}} \int_{0}^{1-y^{2}} x\rho(x, y, z) dz dz dy$ (e) $\int_{0}^{1} \int_{0}^{1-y^{2}} \int_{0}^{1-z} y\rho(x, y, z) dx dz dy$

2. Determine which of the following integrals gives the volume of the solid region bounded by the paraboloid $z = 3y^2 + 3x^2$ and the cone $z = 4 - \sqrt{x^2 + y^2}$.

(a) $\int_0^{2\pi} \int_0^1 \int_{3r^2}^{4-r} r dz dr d\theta$	(b) $\int_0^{2\pi} \int_0^1 \int_0^{4-r} 3r^2 dz dr d\theta$
(c) $\int_0^{2\pi} \int_0^{\pi} \int_{3r^2}^{4-r} r^2 sin\theta dr dz d\theta$ (e) $\int_0^{2\pi} \int_0^{4} \int_0^{3} r sin\theta dr dz d\theta$	(d) $\int_{0}^{2\pi} \int_{0}^{3} \int_{0}^{4-r^{2}} r dz dr d\theta$
(e) $\int_0^{2\pi} \int_0^4 \int_0^3 rsin\theta dr dz d\theta$	

3. Evaluate the line integral with respect to arc length

$$\int_C x \ ds$$

where C is the arc of the parabola $y = x^2$ from (0,0) to (1,1).

(a)
$$(5\sqrt{5}-1)/12$$
 (b) $(2\sqrt{2}-1)/6$ (c) 0
(d) $\sqrt{5}/2$ (e) 1

4. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(t) = 3\sqrt[6]{xy}\mathbf{i} - \mathbf{j}$ and C is the curve $y^2 = x^3$ from (0,0) to (1,1).

(a) 1 (b) 2 (c) 0 (d)
$$-1$$
 (e) 3

- 5. Find the area inside the cardioid $r = 2 + \cos(\theta)$. (a) $\frac{9\pi}{2}$ (b) $\frac{3\pi}{2}$ (c) 6π (d) $\frac{15\pi}{2}$ (e) 3π
- 6. Consider the loop (one leaf) of the 4-leaf rose $r = \cos 2\theta$ which is entirely contained in the first and fourth quadrant. If this region has density $\rho(x, y) = x^2 + y^2$ then which of the following integrals is the moment about the y-axis.

(a)
$$\int_{-\pi/4}^{\pi/4} \int_{0}^{\cos 2\theta} r^{4} \cos \theta \, dr \, d\theta$$
(b)
$$\int_{-\pi/2}^{\pi/2} \int_{0}^{\cos 2\theta} r^{4} \cos \theta \, dr \, d\theta$$
(c)
$$\int_{-\pi/4}^{\pi/4} \int_{0}^{\cos 2\theta} r^{3} \cos \theta \, dr \, d\theta$$
(d)
$$\int_{-\pi/2}^{\pi/2} \int_{0}^{\cos 2\theta} r^{3} \cos \theta \, dr \, d\theta$$
(e)
$$\int_{-\pi/4}^{\pi/4} \int_{0}^{\cos 2\theta} xr^{3} \, dr \, d\theta$$

7. What is $\int_C (\nabla f) \cdot d\mathbf{r}$ if $f(x, y, z) = xy^2 - xze^{yz}$ and C is a curve from (1, 0, 1) to (3, 2, 0).

(a) 13 (b) 10 (c) 0 (d) -5 (e) 21

8. Let E be the solid region bounded by $z = x^2 + y^2$ and $z = 3 - 2x^2 - 2y^2$. Suppose the volume of E is $\frac{3\pi}{2}$ and the density of E is constant. Find the center of mass of E.

(a)
$$(0, 0, \frac{4}{3})$$
 (b) $(-\frac{1}{2}, \frac{1}{2}, 3)$ (c) $(0, 0, \sqrt{2})$ (d) $(0, 0, \frac{3}{2})$ (e) $(0, 0, 1)$

Partial Credit Problems

9. Under the change of variables $x = s^2 - t^2$, y = 2st, the quarter circular region in the *st*-plane given by $s^2 + t^2 \leq 1$ is mapped onto a certain region D of the *xy*-plane. Evaluate

$$\int \int_D rac{dxdy}{\sqrt{x^2+y^2}}.$$

- 10. Let $\mathbf{F} = z^2 \mathbf{i} + z \exp yz \mathbf{j} + (2xz + \cos z + y \exp yz) \mathbf{k}$. Find a function f(x, y, z) such that $\nabla f = \mathbf{F}$.
- 11. Find the volume of the solid under the surface $z = \sin(x^2 + y^2)$ and above the annulus $D = \{(x, y) \mid \frac{\pi}{4} \le x^2 + y^2 \le \frac{\pi}{2}\}.$
- 12. A lamina of uniform density occupies the region D bounded by the parabola $y = 1 x^2$ and the x-axis. Find its center of mass.

Math 20550

Fall 2009

Practice Exam III

- 1. Use a double integral to find the area enclosed by one loop of the rose $r = 2\cos 3\theta$.
 - (a) $\frac{\pi}{3}$ (b) 4π (c) $\frac{\pi}{2}$ (d) 3π (e) 6π
- 2. Find the volume of the solid bounded by the plane z = 0 and the paraboloid $z = 4 x^2 y^2$.
 - (<u>a</u>) 4π (b) $\frac{\pi}{2}$ (c) 8π (d) $\frac{\pi}{4}$ (e) 2π

3. The density function of the lamina is given by $\rho(x, y) = 2\sqrt{x^2 + y^2}$ on a semi-circle lamina $\Omega = \{(x, y) | x^2 + y^2 = \pi, y \ge 0\}$. Find its center of mass.

- (<u>a</u>) $(0, \frac{3}{2})$ (b) $(\frac{3}{2}, 0)$ (c) $(\frac{3}{2\pi}, 0)$ (d) $(0, \frac{3}{2\pi})$ (e) (3, 3)
- 4. Find $\int \int \int_E z dV$, where E is bounded by the cylinder $y^2 + z^2 = 9$ and the plane x = 0, y = 3x and z = 0 in the first octant.
 - (<u>a</u>) $\frac{27}{8}$ (b) 3 (c) 27 (d) 9 (e) 8
- 5. Evaluate the integral $\int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \int_{\sqrt{x^2+y^2}}^{2} xz \, dz dx dy$ by changing to cylindrical coordinates.
 - (<u>a</u>) 0 (b) $\frac{1}{2}$ (c) $\frac{4}{7}$ (d) $\frac{i}{5}$ (e) $\frac{17}{15}$

6. Use a spherical coordinates to evaluate $\int \int \int_E z dV$, where E lies between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$ in the first octant.

(a)
$$\frac{15}{16}\pi$$
 (b) $\frac{16}{15}\pi$ (c) 15π (d) 3π (e) $\frac{4\pi}{3}$

7. Find the volume of the volume of the smaller wedge cut from a sphere of radius 3 by two planes that intersect along a diameter at an angle $\frac{\pi}{6}$.

- (<u>a</u>) 3π (b) $\frac{4\pi}{3}$ (c) $\frac{\pi}{9}$ (d) 9π (e) 6π
- 8. Use the transformation $x = \frac{1}{4}(u+v)$, $y = \frac{1}{4}(u-3v)$ to evaluate the integral $\int \int_{R} (x = 2y) dA$, where R is the parallelogram with vertices (-1,3), (1,-3), (3,-1) and (1,5).
 - (<u>a</u>) 32 (b) $\frac{1}{4}$ (c) $\frac{3}{4}$ (d) 64 (e) 16
- 9. Evaluate $\int \int \int_E z dV$, where $E = \{(x, y, z) \mid \frac{x^2}{16} + \frac{y^2}{4} + \frac{z^2}{9} \le 1\}$ by using the transform x = 4u, y = 3v and z = 3w.
 - (a) 3π . (b) 6π (c) 9π . (d) 2π . (e) 12π
- 10. Find the integral $\int_C (x^2y^3 \sqrt{x})dy$ where C is the arc of the curve $y = \sqrt{x}$ from the origin (0,0) to (4,2).
 - $(\underline{a}) 15 (b) 16 (c) 8 (d) 4 (e) 2$
- 11. Find the line integral $\int_C xzds$ where C is the curve $\mathbf{r}(t) = \langle 4\sin t, 3t, 4\cos t \rangle, 0 \le t \le \pi$.
 - $(\underline{a}) 0 (b) 40 (c) 48 (d) 12 (e) 5$

12. Find the integral $\int_C \tan y dx + x(\sec y)^2 dy$ where C is any path from (0,1) to $(2,\frac{\pi}{4})$.

(a) 2 (b)
$$\frac{\pi}{4}$$
 (c) 1 (d) 0 (e) $\frac{\pi}{2}$

13. Evaluate the iterated integral ∫₀³ ∫_{-√9-y²}⁰ x²ydxdy by converting to polar coordinates.
14. Use a triple integral to find the volume of tetrahedron enclosed by the coordinate planes and the plane x + 2y + z = 4.

15. Let $\rho(x, y, z) = 1$ be the density function defined on the region *E* bounded by the paraboloid $z = x^2 + y^2$ and $z = 36 - 3x^2 - 3y^2$. Find its center of mass.

Answer Key 1

Calculus III

Your Name:_____

Exam III November 27, 2007

Your professor's name:_____

Mark an "X" for your answer to each multiple choice question below. For partial credit questions, show all of your work.

Please sign the honor statement if you agree:

"I strictly followed the Notre Dame Honor Code during this test."

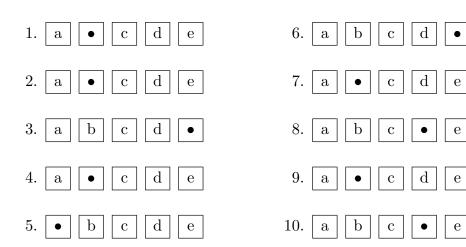
Your Signature _____

number right times 6 =_____

11.12.13.

You start with: 10 points

Total Score _____



 Calculus III
 Your Name:

 Exam III
 November 27, 2007
 Your professor's name:

Mark an "X" for your answer to each multiple choice question below. For partial credit questions, show all of your work.

Please sign the honor statement if you agree:

"I strictly followed the Notre Dame Honor Code during this test."

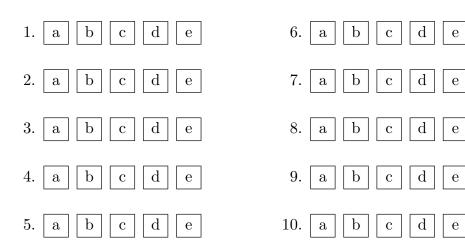
Your Signature _____

number right times 6 =_____

11.12.13.

You start with: 10 points

Total Score _____



1. Find the double integral $\int \int_D [1+3x+y]dxdy$, where D is a triangle with the vertices (0,0), (1,0) and (0,2).

(a) 2 (b)
$$\frac{8}{3}$$
 (c) 3 (d) $\frac{4}{3}$ (e) $\frac{3}{2}$

2. Evaluate $\int_C xyds$, where C is given by $\mathbf{r}(t) = \langle 4\cos t, 4\sin t, 3t \rangle$ for $0 \le t \le \frac{\pi}{2}$. (a) 5 (b) 40 (c) 0 (d) 10 (e) -40

- 3. Find the work $\int_C \mathbf{F} \cdot d\mathbf{r}$ done by the force $\mathbf{F}(x, y, z) = \langle xy, yz, zx \rangle$ in moving a particle along the curve C given by $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$ for $-1 \le t \le 1$.
 - (a) $\frac{27}{28}$ (b) $\frac{1}{2}$ (c) $\frac{5}{7}$ (d) $\frac{1}{4}$ (e) $\frac{10}{7}$

- 4. Use a double integral to find the area enclosed by one loop of four-leaved rose $r = \sin 2\theta$, where $D' = \{(r, \theta) \mid 0 \le \theta \le \frac{\pi}{2}, 0 \le r \le \sin 2\theta\}.$
 - (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{8}$ (c) $\frac{\pi}{4}$ (d) 0 (e) $-\frac{\pi}{2}$

5. Find the total mass of a lamina D of the density $\rho(x, y) = \sqrt{x^2 + y^2}$, where

(a)
$$\frac{8\pi}{3}$$
 (b) $\frac{4\pi}{3}$ (c) $\frac{2\pi}{3}$ (d) $\frac{3\pi}{2}$ (e) $\frac{4\pi}{3}$

6. Use the spherical coordinates to evaluate $\int \int \int_E e^{(x^2+y^2+z^2)^{\frac{3}{2}}} dV$, where $E = \{(x,y,z) \mid y \ge 0, z \ge 0, x^2+y^2+z^2 \le 1\}.$

(a) 0 (b)
$$\frac{4\pi}{3}(e-1)$$
 (c) $\frac{\pi}{3}e$ (d) $4\pi e$ (e) $\frac{\pi}{3}(e-1)$

7. Let
$$\mathbf{F} = \langle xz, xyz, -y^2 \rangle$$
. Find $curl \mathbf{F}$.
(a) $\langle x, -y(2+x), yz \rangle$ (b) $\langle -y(2+x), x, yz \rangle$
(d) $z + xy$ (e) $\langle -y(2+x), -x, yz \rangle$

(c) 0

8. Use cylindrical coordinates to evaluate $\int \int \int_E (x^2 + y^2) dV$, where

(a)
$$\frac{4\pi}{9}$$
 (b) $\frac{3\pi}{4}$ (c) $\frac{4\pi}{3}$ (d) $\frac{16\pi}{5}$ (e) $\frac{\pi}{4}$

9. Use Green's Theorem to evaluate $\oint_C [(3y - e^{x^2})dx + (7x + \sqrt{y^{99} + y + 100})dy]$, where C is the circle $x^2 + y^2 = 9$ with the counter-clockwise orientation.

(a) 0 (b) 36π (c) 3π (d) -36π (e) 7π

10. Let
$$x = 2u$$
 and $y = -3v$. Then $\int_{-3}^{3} \int_{-2}^{2} f(x, y) dx dy$ can be written as:

(a)
$$\frac{1}{6} \int_{-1}^{1} \int_{-1}^{1} f(2u, -3v) du dv$$

(b) $-6 \int_{-1}^{1} \int_{-1}^{1} f(2u, -3v) du dv$
(c) $6 \int_{-3}^{3} \int_{-2}^{2} f(2u, -3v) du dv$
(d) $6 \int_{-1}^{1} \int_{-1}^{1} f(2u, -3v) du dv$
(e) $-4 \int_{-1}^{1} \int_{-1}^{1} f(2u, -3v) du dv$

11. Let $E = \{(x, y, z) | 0 \le x + y + z \le 1, x \ge 0, y \ge 0, z \ge 0\}$ be the region bounded by x = 0, y = 0, z = 0 and x + y + z = 1. Find $\int \int \int_E x dV$.

12. Let $\mathbf{F} = \langle y^2 + 1, 2xy + 2y + e^{3z}, 3ye^{3z} + 3z^2 \rangle$.

(a) Find *curl***F**.

(b) Find a function f such that $\nabla f = \mathbf{F}$ if such a function exists.

(c) Verify that, for your f, the equation $\nabla f = \mathbf{F}$ holds. (In all parts, be sure to show all work.)

13. Is there a vector field **G** on the whole space such that $curl \mathbf{G} = \langle 2yz, xyz, 3xy \rangle$? Explain why. (No explanation, no credit).