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Abstract. We study computably enumerable equivalence relations (ceers) on

N and unravel a rich structural theory for a strong notion of reducibility among
ceers.
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1. Introduction

Definition 1.1. An equivalence relation R on N is a ceer if R is a c.e. subset of
N2. Such equivalence relations are also called positive.

Definition 1.2. For two ceers R1 and R2, we say that R1 is m-reducible to(or
many-one reducible to) R2, denoted R1 ≤m R2, if there is a computable function
f : N→ N such that, for any x, y ∈ N,

xR1y ⇔ f(x)R2f(y).

We say that R1 is 1-reducible to R2, denoted R1 ≤1 R2, if there is a one-one
computable function as above. Sometimes we omit the prefix and say that R1 is
reducible to R2, and denote R1 ≤ R2. When we do this, the reducibility is meant
to be many-one. We write R1 <m R2 or R1 < R2 for the statement that R1 ≤ R2

but R2 6≤ R1. We write R1 ≡ R2 if R1 ≤ R2 ≤ R1.

Note that this reducibility is a stronger notion than the ordinary reducibility
among sets. Thus the following notion of “completeness” is stronger than the
corresponding concept for sets.
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Definition 1.3. A ceer R is universal if S ≤ R for any ceer S.

Positive equivalence relations were first studied by Ershov [3], although he did
not study the reducibility notion defined above. Ershov introduced the following
notion of precompleteness.

Definition 1.4. A ceer R is precomplete if R has infinitely many equivalence classes
and for every partial computable function ψ there is a total computable function f
such that for any n ∈ N with ψ(n)↓ , f(n)Rψ(n).

Visser [10] studied examples of ceers in logic, especially precomplete ones. How-
ever, it seems that Bernardi and Sorbi [2] were the first authors to have isolated the
strong reducibility notion and studied universal ceers in the sense defined above. In
particular, they proved that precomplete ceers must be universal. Lachlan [5] later
showed that precomplete ceers are computably isomorphic to each other. He also
considered another natural notion of completeness (called e-complete) and demon-
strated nice properties and natural examples of e-complete ceers.

Ceers were also studied from a different perspective by Nies [7]. Some classes
of ceers Nies considered will be redefined in this paper and their structure of re-
ducibility will be investigated.

Examples of ceers in algebra, topology, logic and other areas of mathematics
have been investigated under different disguises. For example, all word problems
(not the identity problems) for semigroups and groups are in fact ceers. It is
easily derivable from the proofs of the classical unsolvability results that there are
semigroups and groups whose word problems are universal ceers. A non-trivial
example was considered by Miller [6], who established that the isomorphism of
finitely generated groups is a universal ceer.

Our primary goal in this paper is to develop a comprehensive theory for the
structure of reducibility among ceers. Given the interesting circumstances that
universal ceers are in some sense better understood, we will mostly focus on non-
universal ceers in this paper. Our hope is to understand enough about non-universal
ceers and the ways more complicated ceers can be built from simpler ones, so as to
eventually clarify the structure of the strong reducibility.

The research work presented in this paper was to a large extent motivated by
the theory of Borel reducibility among Borel (or other definable) equivalence rela-
tions, developed by Becker, Kechris (e.g. [1]), Friedman, Stanley ([4]) and others.
Although there are no direct connections between the two subjects, the general
methodology we employ in the current research is much similar to the theory of
Borel equivalence relations.

Let us briefly mention some speculations about the advantages to consider the
strong reducibility notion. First of all, the most interesting applications of the
theory of equivalence relations are often classification problems for various kinds of
structures in mathematics. Furthermore, to classify a structure is usually meant
to obtain a complete set of invariants for the structure. What we are investigating
about ceers under the strong reducibility can then be viewed as an abstract frame-
work for a study of the possibilities to effectively compute complete invariants. In
this sense our reducibility is arguably more natural than the reducibility among
sets.

Second, a ceer can be viewed as a c.e. decomposition of the universe. Hence
the reducibility among ceers as equivalence relations generalizes various notion of
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simultaneous reduction for sequences of sets or reduction for “promise” problems.
Also, natural non-universal ceers are easy to construct. This is in contrast with
the situation in computability theory for sets, where sophisticated constructions
are usually needed to ensure existence.

The rest of the paper is organized as follows. Section 2 contains some prelimi-
naries about ceers. In sections 3-6 we consider ceers with simplest formations and
explore the reducibility among them. In sections 7 and 8 we defined two notion of
jump operations for ceers. As we have mentioned above, more complicated ceers
can thus be formed and more interesting properties can be obtained. In sections 8
and 9 we clarify the structure of reducibility among the ceers constructed in earlier
sections. Section 10 contains a summary of the theory and some open problems to
consider in future researches.

2. Indices for ceers

Our basic notation about partial computable functions and c.e. sets follows that
of [9]. The partial computable function with index e is denoted by ϕe. The c.e. set
with index e is denoted by We. If ψ is a partial computable function and x ∈ N,
then the domain of ψ is denoted by domψ; ψ(x) ↓ indicates that x ∈ domψ and
ψ(x)↑ otherwise. For a partial computable function ψ and n ∈ N, ψn denotes the
partial computable function obtained by n iterated compositions of ψ. This can be
defined precisely by induction on n: ψ0(x) = x and ψn+1(x) = ψ(ψn(x)) for any
x ∈ N.

Throughout the paper we adopt the following notation. Denote K = {x ∈
N |ϕx(x)↓ } and K = N \K. For i ∈ N, let Ki = {x ∈ K |ϕx(x)↓= i}. We use the
notation 〈·, ·〉 to denote a fixed computable bijection between N2 and N and call it
the coding function. Coding functions of arbitrary arities are similarly represented.

Next we fix some notation and note some basic facts about ceers.
For a ceer R on N and x ∈ N, denote by [x]R the R-equivalence class containing

x and by |[x]R| the cardinality of [x]R.
The set of all ceers is computably enumerable. Let Re be the equivalence relation

generated by the set {(x, y) | 〈x, y〉 ∈ We}. Then Re is a ceer and all ceers appear
in this enumeration as some Re. We will regard this as the canonical enumeration
for all ceers and say that e is a canonical c.e. index for the relation Re.

Let R∞ be defined by

〈x, z〉R∞〈y, z〉 ⇔ xRzy

for x, y, z ∈ N. (It is to be understood in this definition, as well as in all definitions
of a similar form in the sequel, that no other pair of distinct numbers is in the
relation.) It is obvious that R∞ is a universal ceer.

There are other procedures which can generate all ceers. The following definition
is due to Ershov.

Definition 2.1. For each partial computable function f , define the ceer ηf by

xηfy ⇔ ∃n,m(fn(x)↓= fm(y)↓ ), for x, y ∈ N.

Then ηf is the ceer generated by the graph of f . If e is an index for f , then we also
write ηf as ηe, and we call e the iterative c.e. index for ηe.

Ershov [3] showed that every ceer has an iterative c.e. index. We note below
that the two indexing systems are essentially the same.
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Theorem 2.2. There is a computable isomorphism ρ such that ηe = Rρ(e).

Proof. A proof of Ershov’s result indicates, in fact it is not hard to see directly,
that there is a one-one computable function f(n, e) such that Re = ηf(n,e) for
any n, e ∈ N. Similarly, there is a one-one computable function g(n, e) such that
ηe = Rg(n,e) for any n, e ∈ N. With this padding property it is then routine to
define a computable isomorphism ρ by a back-and-forth construction as follows.

Let ρ(0) = f(0, 0). If f(0, 0) = 0 then ρ−1(0) is already defined. Otherwise, we
define ρ−1(0) to be g(k, 0) where k is the least such that g(k, 0) 6= 0. In general
suppose both ρ and ρ−1 are defined for i < n. If n ∈ {ρ−1(0), . . . , ρ−1(n− 1)} then
ρ(n) is already defined. Otherwise let ρ(n) be f(k, n) where k is the least such that
f(k, n) 6∈ {ρ(0), . . . , ρ(n− 1)}. Then in a similar way define ρ−1(n). The resulting
ρ is one-one, onto and computable. �

Ceers can also be generated by computable actions of countable computable
groups on N. When the ceer has no finite equivalence classes, the group can be
taken to be the additive group of Z.

It will be useful to note that the reducibility among ceers is a Σ3 relation. Specif-
ically, the index set {(e, i) |Re ≤ Ri} is Σ3. This is by a straightforward compu-
tation. It follows that the set {(e, i) |Re ≡ Ri} is also Σ3. In the subsequent
sections we will show that both reducibility and bi-reducibility among ceers are
Σ3-complete.

In the subsequent sections we will consider various classes of ceers, and we will
adopt the following terminology.

Definition 2.3. Let C be a non-empty class of ceers. A ceer R is said to be
essentially in C if R ≤ S for some S ∈ C. R is universal for C if R ∈ C and S ≤ R
for any S ∈ C. If C has a universal relation in it, then R is essentially universal for
C if R ≡ S for some S universal for C.

Much of our investigation is focused on finding and describing universal relations
for different classes of ceers.

3. Computable equivalence relations and partial classifiability

Computable equivalence relations are the simplest ones among ceers with respect
to reducibility.

Definition 3.1. For each n ∈ N and n > 0, let id(n) denote the following equiva-
lence relation on N with n equivalence classes:

xid(n)y ⇔ x ≡ y(modn), for x, y ∈ N.
Let id(N) or ω be the identity relation on N:

xωy ⇔ x = y, for x, y ∈ N.

Definition 3.2. Let R be a ceer on N. A subset T ⊆ N is called a transversal for
R if T meets each R-equivalence class in exactly one element.

Then we have the following complete characterization and classification of com-
putable equivalence relations.

Proposition 3.3.

(1) For each n ∈ N and n > 0, id(n) is computable; and ω is computable.
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(2) id(1) < id(2) < · · · < id(n) < · · · < ω.
(3) If R < ω, then there is some n ∈ N such that R ≡ id(n).

Proof. (1) and (2) are obvious. For (3), suppose R < ω, then it follows that R
is computable. If R has infinitely many equivalence classes, then ω ≤ R via the
following computable function f defined by primitive recursion:

f(0) = 0
f(x+ 1) = µy(y > f(x) ∧ ∀z ≤ x¬(yRf(z))).

It follows that R has only finitely many equivalence classes. Let n ∈ N be the
number of equivalence classes of R. Then it is easy to see that R ≡ id(n). �

Proposition 3.4. The following are equivalent for any ceer R:

(i) R is computable;
(ii) R ≤ ω;

(iii) R has an c.e. transversal;
(iv) R has a computable transversal;
(v) T (R) =def {min(C) |C is an R-equivalence class} is computable.

Proof. Note that (i)⇒ (v)⇒ (iv)⇒ (iii) and (ii)⇒ (i) are obvious. We are only
left to prove (iii) ⇒ (ii). Suppose T is an c.e. transversal for R. Consider the
function g : N→ T defined by letting g(x) be the unique element y ∈ T with xRy.
Then g is total because T is a transversal. It is obvious that the graph of g is c.e.,
hence g is computable. But then g is a reduction from R to ω. �

The proposition implies that computable ceers are exactly the kind of ceers for
which natural numbers can be effectively assigned to equivalence classes as complete
invariants. Such equivalence relations should be considered classifiable in an ideal
sense. Historically people have also considered the possibility of assigning an infinite
system of natural numbers as complete invariants (e.g. [8]), in the following we
remark that infinite systems of invariants do not help.

Proposition 3.5. Let R be a non-computable ceer. Then there is no computable
function f(m,n) such that, for any x, y ∈ N,

xRy ⇔ ∀m(f(m,x) = f(m, y)).

Proof. The existence of such an f would imply that R is co-c.e.; since R is c.e. it
would follow that R is computable, contradiction. �

Next we formulate a notion of partial classifiability for ceers.

Definition 3.6. For each partial computable function ψ define ceer Pψ by

xPψy ⇔ x = y ∨ ψ(x)↓= ψ(y)↓ , for x, y ∈ N.

Since ψ can be viewed as a function partially assigning complete invariants for
(at least) the non-trivial equivalence classes, we call ceers of the form Pψ partially
classifiable or in abbreviated form, PC.

It turns out that there is a universal PC relation.

Definition 3.7. The ceer H (standing for halting equivalence) is defined by

xHy ⇔ x = y ∨ ϕx(x)↓= ϕy(y)↓
for x, y ∈ N.
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It is immediate from the definition that H is PC.

Proposition 3.8. H is universal for PC relations, i.e., for any PC relation R,
R ≤ H.

Proof. Suppose R is PC, as witnessed by partial computable function ψ. Let f
be one-one computable function obtained by s-m-n Theorem such that ϕf(x)(y) =
ψ(x). Then f witnesses that R ≤ H. �

The following simple observation will be useful in § 7.

Proposition 3.9. Let E be a ceer without computable classes. Let R be a PC-
relation. Then E 6≤ R.

Proof. Suppose f is a computable function witnessing E ≤ R. Suppose ψ is a
partial computable function with R = Pψ. Then we claim that, for every x ∈ N,
ψ(f(x)) is defined. Otherwise, we have that [f(x)]R is a singleton containing only
f(x), thus by the assumption that f is a reduction, we would have that [x]E is
computable. Therefore we in fact have that ψ ◦ f is a total computable function;
moreover, ψ ◦ f witnesses that E ≤ ω, again implying that every E-class is com-
putable, contradiction. �

4. Finite dimensional ceers

Definition 4.1. Let n ∈ N and n > 0. A ceer R is n-dimensional if there are
pairwise disjoint c.e. sets A1, . . . , An such that

xRy ⇔ x = y ∨ ∃i ≤ n(x, y ∈ Ai).
We denote the above relation by RA1,...,An . A ceer is finite dimensional if it is
n-dimensional for some n ∈ N.

We have the following easy facts about 1-dimensional ceers.

Proposition 4.2. Let A,B be non-empty c.e. sets.

(1) RA is computable iff A is computable.
(2) A ≤1 B iff RA ≤1 RB.
(3) If RA ≤ RB, then A ≤m B.

Proof. For (1) one direction follows immediately from the definition. Conversely,
suppose RA is computable, then it has a computable transversal T . Note that T ∩A
is a singleton, therefore T \ A is computable. But T \ A is just the complement of
A, it follows that A is computable. (2) and (3) are obvious. �

The proposition indicates that the reducibility among 1-dimensional relations is
very similar to that among c.e. sets. In fact, the proof of (1) shows that RA (as
a subset of N2) is in the same Turing degree as A. Because of the transparency
of the reducibility among 1-dimensional ceers modulo that among the c.e. sets, we
consider the 1-dimensional ceers completely classified.

Proposition 4.3. Let n ∈ N and n > 0.

(1) If R is an n-dimensional ceer, then R ≤1 RK0,...,Kn−1
.

(2) RK0,...,Kn−1 < RK0,...,Kn .
(3) Let k ≤ n and R = RA1,...,An . Then R is essentially k-dimensional iff at

most k of the sets A1, . . . , An are non-computable.
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Proof. First consider (1). Let A0, . . . , An−1 be disjoint c.e. sets. We are to define a
reduction to witness RA0,...,An−1 ≤ RK0,...,Kn−1 . First define a partial computable
function F as follows.

F (e, x, y) =

{
i if i < n, x ∈ Ai and y = ϕe(x)
↑ otherwise

Let s(e, x) be a one-one total computable function with F (e, x, y) = ϕs(e,x)(y).
Then by the fixed point theorem, let e0 be such that ϕe0(x) = s(e0, x), for all x.
Finally let f(x) = ϕe0(x). Then f is one-one computable. We verify that f is the
required reduction. If x ∈ Ai for some i < n, then F (e0, x, f(x)) = i by definition
of F , which means ϕs(e0,x)(f(x)) = ϕf(x)(f(x)) = i, or f(x) ∈ Ki. If x 6∈ Ai for
any i < n, then by the definition of F , F (e0, x, f(x))↑ , which means f(x) 6∈ Ki for
any i < n.

For (2), note first that it follows from (1) that RK0,...,Kn−1
≤ RK0,...,Kn

. To see
that RK0,...,Kn

6≤ RK0,...,Kn−1
, just note that for any reduction function h there is

some i ≤ n such that h sends the class Ki to a single element. This implies that
Ki is computable, a contradiction.

(3) can be shown by a similar argument as in the last paragraph. �

The proposition establishes a hierarchy for finite dimensional ceers with a uni-
versal relation in each level.

At this point it is natural to ask whether the identity relation is reducible to
all non-computable ceers. We prove that this is not the case. Furthermore, we
completely characterize those finite dimensional ceers to which the identity relation
is reducible. Recall the definition of simple sets by Post.

Definition 4.4. An c.e. set A ⊆ N is simple if

(a) the complement of A is infinite, and
(b) for any infinite c.e. set B ⊆ N, A ∩B 6= ∅.

It is well known that simple sets exist and that none of them is m-complete
among the c.e. sets.

Proposition 4.5. Let A1, . . . , An be disjoint c.e. sets the complement of whose
union is infinite. Then

ω ≤ RA1,...,An ⇔ A1 ∪ · · · ∪An is not simple.

Proof. Let A =
⋃
i≤nAi. Suppose f witness the reduction ω ≤ RA1,...,An

. Let S

be the range of f . Then S ∩ A contains at most n elements. It follows that S \ A
is an infinite c.e. set. Therefore A is not simple. Conversely, if A is not simple,
then its complement contains an infinite c.e. set. Let f be a computable function
enumerating this set. Then f is a reduction from ω to RA1,...,An

. �

Next let us remark that all finite dimensional ceers are PC.

Proposition 4.6. All finite dimensional ceers are PC.

Proof. Let A1, . . . , An be disjoint c.e. sets. Then RA1,...,An
is PC as witnessed by

the following partial computable function ψ, defined by

ψ(x) =

{
i if x ∈ Ai
↑ otherwise

�
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Thus the halting equivalence H is an upper bound for all finite dimensional ceers
in the reducibility order. In fact, the definitions suggest that H is quite a natural
limit for all RK0,··· ,Kn . Nevertheless, it is not clear whether H is a least upper
bound.

We are now ready to show that reducibility and bi-reducibility among ceers are
Σ3-complete.

Proposition 4.7. The set {e |Re ≤ ω} is Σ3-complete.

Proof. It is well known that the set Comp= {i |Wi is computable} is Σ3-complete
(see [9] Theorem 14-XVI). For each i ∈ N, consider the one-dimensional ceer RWi

.
It is obvious that RWi

≤ ω iff RWi
is computable iff Wi is computable. Moreover,

it is easy to see that there is a computable function f such that Rf(i) = RWi
.

Therefore Comp is reducible to the set in question. �

This immediately gives the Σ3-completeness of reducibility and bi-reducibility.

Corollary 4.8. The reducibility and bi-reducibility among ceers is Σ3-complete.

Proof. The assertion about reducibility follows trivially from the above proposition.
For bi-reducibility consider, for each i ∈ N, the one-dimensional ceer R2Wi

, where
2Wi = {2x |x ∈ Wi}. Then ω ≤ R2Wi

for every i ∈ N. Moreover, R2Wi
≤ ω iff

2Wi is computable iff Wi is computable. We thus have that the set {e|Re ≡ ω} is
Σ3-complete. �

Next we consider the complexity of various other sets arising from the reducibility
of ceers.

Lemma 4.9. The index set {e | ∃i( Wi is infinite and Wi∩We = ∅)} is Σ3-complete.

Proof. It is well known that the set {e |We is simple} is Π3-complete. A proof of
this can be found in [9] Exercise 14-31, which uses eventually a theorem of Dekker
([9] Theorem 9-XVI). Note that Dekker’s proof effectively shows that there is a
computable function f such that, for any x, Wf(x) is co-infinite, and Wx is not
computable iff Wf(x) is simple (in fact hypersimple). This reduction function f
witnesses that Comp is reducible to our set in question. �

Proposition 4.10. The set {e |ω ≤ Re} is Σ3-complete.

Proof. This now follows easily from Proposition 4.5 and Lemma 4.9. �

By similar proofs we obtain the following results.

Proposition 4.11. The following index sets are Σ3-complete:

(1) {e |Re ≤ RA} and {e |Re ≡ RA}, where A ⊆ N is non-empty, c.e., not
simple and has infinite complement.

(2) {e |Re is essentially n-dimensional}, where n > 0.
(3) {e |Re is essentially universal n-dimensional}, where n > 0.
(4) {e |Re is essentially finite dimensional}.

Proof. Let us sketch the proof for (1); the other parts are similar. Let A be as given
and C be a computable infinite subset of N \A. Fix a computable bijection θ from
N onto C. For each e consider the 2-dimensional ceer RA,θ(We). By Proposition
4.3 it is easy to see that RA,θ(We) ≤ RA iff We is computable, and when this
happens we also have RA,θ(We) ≡ RA. Similar to the proof of Proposition 4.7 we
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can then construct reductions from Comp to the index sets {e |Re ≤ RA} and
{e |Re ≡ RA}. �

5. FC relations and CC relations

Since ceers with only finitely many equivalence classes are not very interesting
in terms of reducibility, we call such relations trivial.

Definition 5.1. A ceer R is FC (standing for finite classes) if all of its equivalence
classes are finite. R is CC (for computable classes) if all of its equivalence classes
are computable.

Let us summarize some basic facts.

Proposition 5.2.

(1) All FC relations are CC.
(2) If R1 ≤ R2 and R2 is CC, then R1 is CC.
(3) If R is a PC-relation whose every equivalence class is non-trivial, then R is

computable. Therefore, there are CC relations which are not PC. In fact,
for each non-computable PC-relation R there is S ≡ R such that S is not
PC.

(4) For each FC relation R there is S ≡ R such that S is not FC.

Proof. (1),(2) and the first part of (3) are obvious. For the second part of (3) and
(4) define S by

〈x, u〉S〈y, v〉 ⇔ xRy,

then every equivalence class of S is infinite, and it is easy to see that S ≡ R. �

We have the following non-reducibility result between finite dimensional relations
and CC relations.

Proposition 5.3. Let R be a non-computable finite dimensional ceer and S be a
non-computable CC relation. Then R 6≤ S and S 6≤ R.

Proof. Note the general fact: if R1 ≤ R2 via f and [y]R2
is computable, then the

preimage set C = {x | f(x)R2y} is also computable. In fact, either C is empty
or C is a single R1-equivalence class. Moreover C ≤m [y]R2 via f . Let R and S
be given as in the hypothesis. Then R 6≤ S is an immediate consequence of the
above fact. For S 6≤ R, suppose R = RA1,...,An

where A1, . . . , An are disjoint c.e.
non-computable. Assume that f witnesses S ≤ R and suppose B = {f(x) |x ∈ N}.
Let A =

⋃
i≤nAi. If B ∩A = ∅, then f is in fact a witness for S ≤ ω, contradicting

the hypothesis that S is non-computable. Otherwise, let C1, . . . , Ck (k ≤ n) be
the S-equivalence classes with f(x) ∈ Ai for i ≤ k and x ∈ Ci. Choose arbitrary
elements yi ∈ Ai for i ≤ k and define

g(x) =

{
yi if i ≤ k and x ∈ Ci
f(x) otherwise

Then g witnesses that S ≤ ω, again contradicting the hypothesis that S is non-
computable. �

We next consider the question of when ω ≤ R for an FC relation R.
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Definition 5.4. For an c.e. set A ⊆ N, let FA be the equivalence relation defined
by

xFAy ⇔ x = y ∨ ∀z(min(x, y) ≤ z ≤ max(x, y)→ z ∈ A), for x, y ∈ N.
Then FA is a ceer.

If A is an c.e. set whose complement is infinite, then FA is an FC relation. In
analogy with the result of preceding section we have the following proposition. Let
us recall the definition of hypersimple sets, also due to Post.

Definition 5.5.

(a) Let A ⊆ N be an infinite set and f a total function on N. We say that
f majorizes A if, letting z0, z1, . . . be the enumeration of A in strictly
increasing order, we have that (∀n)f(n) ≥ zn.

(b) An c.e. set A ⊆ N is hypersimple if the complement of A is infinite and
there is no computable f such that f majorizes N \A.

Proposition 5.6. Let A ⊆ N be an c.e. set whose complement is infinite. Then

ω ≤ FA ⇔ A is not hypersimple.

Proof. Suppose f witnesses that ω ≤ FA. Then define by recursion a function g as
follows.

g(0) = f(0),
g(n+ 1) = f(x), where x is the least with f(x) > g(n).

Since the complement of A is infinite, g is total computable. Letting h(n) = g(n+1),
then h majorizes N \ A, therefore A is not hypersimple. Conversely, if A is not
hypersimple, let h be a computable function majorizing N \ A and let z0, z1, . . .
be an enumeration of N \ A in strictly increasing order. We define a computable
function f enumerating an infinite set of pairwise inequivalent elements of FA, then
f witnesses that ω ≤ FA. Let

f(0) = 0,
f(n+ 1) = h(f(n)).

Then f(n) ≤ zf(n) < h(f(n)) = f(n + 1). Since zf(n) 6∈ A, by definition of FA we
have that f(n) and f(n+ 1) are inequivalent. �

The following results concern the complexity of being FC, essentially FC and
CC.

Lemma 5.7. There is a computable function f such that, for any x ∈ N,

Wx is co-finite ⇒ Rf(x) is not CC, and
Wx is co-infinite ⇒ Rf(x) is FC.

Proof. Given an c.e. set W define a ceer RW by

xRy ⇔ x = y ∨ (∀z(min(x, y) ≤ z ≤ max(x, y)→ z ∈W ) ∧ x, y ∈ K).

Then if W is co-finite R is a finite modification of RK , hence R is not CC. If W is
co-infinite then R is obviously FC. �

Proposition 5.8.

(1) The set {e |Re is FC} is Π3-complete.
(2) The set {e |Re is essentially FC} is Π3-hard.
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Proof. These follow from the preceding lemma and some additional observations.
First of all, note that the set {e |We is co-finite} is known to be Σ3-complete. Then,
for (1) just note that being FC is Π3. For (2) note that if R is not CC, then R is
not essentially FC. �

Lemma 5.9. The set {e | ∀x {y | 〈x, y〉 ∈We} is computable} is Π4-complete.

Proof. Denote the set by X. X is obviously Π4. To see that it is Π4-complete, let
A be an arbitrary Π4 set and let B ∈ Σ3 be such that

x ∈ A⇔ ∀y(〈x, y〉 ∈ B), for all x.

Let f be a reduction function from B to Comp. Define a computable function g
such that, for any e, x, y ∈ N,

〈y, x〉 ∈Wg(e) ⇔ x ∈Wf(〈e,y〉).

Then for any e ∈ N,

e ∈ A ⇔ ∀y(〈e, y〉 ∈ B)
⇔ ∀y(f(〈e, y〉) ∈ Comp)
⇔ ∀y(Wf(〈e,y〉) is computable)
⇔ ∀y( the set {x | 〈y, x〉 ∈Wg(e)} is computable)
⇔ g(e) ∈ X

This shows that A ≤m X. Since A is arbitrary, X is Π4-complete. �

Proposition 5.10. The set {e |Re is CC} is Π4-complete.

Proof. A straightforward computation shows that it is Π4. To see that it is Π4-
complete, for any c.e. set W define a ceer RW by

〈x, y〉RW 〈x, z〉 ⇔ y = z ∨ (〈x, y〉, 〈x, z〉 ∈W )

for any x, y, z ∈ N. Let X be the index set in the preceding lemma. Then e ∈ X iff
the relation RWe is CC. �

Corollary 5.11.

(1) There is no universal FC relation.
(2) There is no universal CC relation.
(3) There is an CC relation which is not essentially FC.

Proof. For (1) and (2) note that if there were a universal FC or CC relation, then
being essentially FC or being CC would be Σ3, contradicting Proposition 5.8(2)
and Proposition 5.10. For (3), if every CC relation were essentially FC, then the
sets {e |Re is CC} and {e |Re is essentially FC} would be the same. But this is
impossible since the former is Π4-complete and the latter is Σ4. �

Part (3) of this corollary asserts the abstract existence of some ceers of which
we do not yet have any constructed example.
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6. Bounded relations

Definition 6.1. For k ∈ N and k > 0, we say that R is k-bounded if every R-
equivalence class contains at most k elements. R is bounded if it is k-bounded for
some k ∈ N.

The following theorem shows that ω ≤ R for all bounded relations R but there
is no uniform effective way to find the reduction.

Theorem 6.2.

(1) If R is a bounded relation, then ω ≤ R.
(2) Let k ∈ N and k > 1. There is no partial computable function ρ(e, x) such

that, whenever Re is a k-bounded ceer then ρ(e, x) ↓ , for all x ∈ N and
ρ(e, ·) witnesses the reduction from ω to Re.

Proof. (1) Suppose R is k-bounded. For each i ≤ k, let Ni be the number of R-
equivalence classes containing exactly i many elements. Since

∑
i≤kNi =∞, there

is a biggest l ≤ k such that Nl = ∞. Let F be the set of all elements whose R-
equivalence class has more than l elements. Then F is a finite set. Now let Γ be an
enumeration of the pairs of elements in R. We define a computable reduction from
ω to R by listing an infinite set of pairwise non-R-equivalent elements by stages.
At stage n suppose a finite set An of pairwise inequivalent elements has been listed.
Then carry out the n-th stage of Γ and enumerate a pair (x, y). If x 6∈ F and there
have been l elements enumerated in [x]R by Γ, then we know that these l elements
form exactly [x]R. In this situation list the smallest element of [x]R, provided that
it has not been listed before, and go on to the next stage. In the situation that
the above conditions are not fulfilled, do nothing and go on to the next stage.
From our assumption that Nl = ∞ it follows that this procedure would produce
infinitely many elements, and from the construction they are pairwise inequivalent.
This finishes the proof for (1).

For (2), it suffices to show the conclusion for k = 2. Toward a contradiction,
assume there is such a partial computable function ρ. Let s be a computable
function such that for any e the ceer Rs(e) is given by

xRs(e)y ⇔ x = y ∨ (x = ρ(e, 0)↓ ∧y = ρ(e, 1)↓ ) ∨ (x = ρ(e, 1)↓ ∧y = ρ(e, 0)↓ ),

for x, y ∈ N. It is obvious that Rs(e) is 2-bounded for any e. Now by the fixed
point theorem there is some e0 such that We0 = Ws(e0). For this e0 we have
that Re0 = Rs(e0). Since Rs(e) is always 2-bounded, it follows that Re0 is 2-
bounded and that for all x, ρ(e0, x) ↓. But then by the definition of Rs(e0) we
have that ρ(e0, 0)Rs(e0)ρ(e0, 1), which implies that ρ(e0, 0)Re0ρ(e0, 1), which is a
contradiction to our assumption that ρ(e0, ·) witnesses a reduction from ω to Re0 .

�

Fix k > 1. Note that there is a computable enumeration of all k-bounded
relations. A canonical enumeration can be given as follows. For an index e, let Re
be the e-th ceer in the canonical enumeration of all ceers. We modify Re by omitting
any pair in its enumeration which would give rise to an equivalence class of size
> k. Denote this resulting k-bounded relation by Bke . Then {Bke }e∈ω enumerates
exactly all k-bounded relations.

For each k > 1, define a ceer Bk∞ by

〈x, z〉Bk∞〈y, z〉 ⇔ xBkz y, for x, y, z ∈ N.
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Then Bk∞ is k-bounded and is in fact universal for all k-bounded relations, i.e., if
R is an arbitrary k-bounded relation, then R ≤ Bk∞.

The following theorem establishes a hierarchy for bounded relations in analogy
with the hierarchy of finite dimensional relations.

Theorem 6.3 (Bounded Hierarchy Theorem). For any k > 0, Bk∞ < Bk+1
∞ .

Proof. It suffices to show that there is a k+ 1-bounded relation which is not essen-
tially k-bounded. For this, let A be a non-computable c.e. set and define a ceer R
by

〈x, i〉R〈x, j〉 ⇔ i = j ∨ (i, j ≤ k ∧ x ∈ A),

for x, i, j ∈ N. Then R is k + 1-bounded.
Now assume R is essentially k-bounded, i.e., there are computable function f

and k-bounded relation S such that R ≤ S via f . Then we have

x ∈ A⇔ ∃i, j ≤ k(i 6= j ∧ f(〈x, i〉) = f(〈x, j〉)).

In fact, if x ∈ A, then [〈x, 0〉]R has k + 1 elements; and since f is a reduction,
it must map the k + 1 elements into some single S-class, which only has at most
k-elements. On the other hand, if x 6∈ A, then the elements 〈x, i〉 are pairwise
R-inequivalent; again by that f is a reduction, it follows that the statement on the
right hand side cannot happen. Now the statement gives a computable definition
for A, a contradiction to our hypothesis that A is non-computable. �

The idea of the above proof can be used to show that there are FC relations
which are not essentially bounded.

Proposition 6.4. There are FC relations which are not essentially bounded.

Proof. Again let A be a non-computable c.e. set and define a ceer R by a slight
modification to the previous definition, as follows. Let

〈x, i〉R〈x, j〉 ⇔ i = j ∨ (i, j ≤ x ∧ x ∈ A),

for x, i, j ∈ N. It is easy to see that R is FC.
Now assume R is essentially k-bounded and let f be a computable reduction

function witnessing this. Then by the same argument as before, we have that for
x > k,

x ∈ A⇔ ∃i, j ≤ x(i 6= j ∧ f(〈x, i〉) = f(〈x, j〉)),
which gives again a computable definition for A, a contradiction. �

This proposition is also a corollary of Proposition 5.8 (1) and the fact that being
essentially bounded is Σ3. But of course, the construction here makes the proof
more favorable than the abstract comparison of the complexities. Results in § 8
will show that if A is hypersimple, then the FC relation FA defined in Definition
5.4 is not essentially bounded. This provides another proof of Proposition 6.4.

Similar to Proposition 4.11, we can characterize the complexity of various index
sets related to boundedness.

Proposition 6.5. The following index sets are Σ3-complete:

(1) {e |Re is essentially n-bounded}, where n > 1.
(2) {e |Re is essentially universal n-bounded}, where n > 1.
(3) {e |Re is essentially bounded}.
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The proof is similar to that of Proposition 4.11. It is not clear whether {e |Bne ≡
Bn∞} is Σ3-complete for all n > 1.

Next we further explore the notion of essential boundedness.

Proposition 6.6. Let k ≥ 3. Let R be a k-bounded relation such that every equiv-
alence class of R is non-trivial. Then R is essentially bk2 c-bounded. In particular,
if k = 3, then R is computable.

Proof. Let Γ be an enumeration of the pairs of distinct elements in R. Without
loss of generality assume that at each stage Γ enumerates one pair. For each stage
s, let Ds be the set of all elements appeared in some pair enumerated in Γ before
stage s and let Es be the equivalence relation on Ds generated by Γ before stage
s. Then we assume also that Es+1 6= Es for every s. By our assumption that no
R-equivalence class is a singleton,

⋃
sDs = N. We define a bk2 c-bounded relation S

and a reduction f from R to S simultaneously by stages.
At stage 0, let S0 = ω and f0 be empty. At stage s+ 1, suppose we have already

defined bk2 c-bounded Ss on Ds with Ss ⊆ Es and fs witnessing a reduction from
Es to Ss. Let (i, j) be the pair given by Γ at stage s. There are four cases.

(1) Ds+1 = Ds ∪ {i, j}. In this case let Ss+1 be the trivial extension of Ss to
the domain Ds+1 and let fs+1 = fs ∪ {(i,min(i, j)), (j,min(i, j))}.

(2) Ds+1 = Ds ∪ {i}. Let C be the Es-class of j. Define Ss+1 be the trivial
extension of Ss to the domain Ds+1 and let fs+1 = fs ∪ {(i,min fs(C))}.

(3) Ds+1 = Ds ∪ {j}. Similar to Case 2.
(4) Ds+1 = Ds. Let C and D be the Es-classes of i and j, respectively. Then

C ∪D is an Es+1-class. Define Ss+1 = Ss ∪ {(min fs(C),min fs(D))} and
let fs+1 = fs.

It is easy to see by induction that for each Ss-class A, there is some Es-class C such
that A ⊆ C and that the size of A is less than half of that of C. This guarantees
that S is bk2 c-bounded. �

A corollary to the proof is that all 3-bounded relations are PC.

Corollary 6.7. All 3-bounded relations are PC. In particular, B3
∞ ≤ H.

Proof. Suppose R is 3-bounded. Use the same proof as above. The relation S
constructed will be just ω, since Case 4 never happens. The only difference is that
we do not know

⋃
sDs = N now, corresponding to the situation that f may be

only partial computable. But then f witnesses the definition of R being PC. For
the second assertion, just note that H is universal for PC relations. �

This corollary describes a part of the general relationship between bounded re-
lations and the halting equivalence and its jumps (see § 8). In particular, it is also
true that B4

∞ 6≤ H. We postpone the proof to § 8, where a much more general
result is stated and proved.

To consider another generalization of the above results, we define spectra for
ceers.

Definition 6.8. Let R be ceer. Then the spectrum of R is the set

spec(R) = {n ∈ N |n = |[x]R| for some x ∈ N}.
With this definition, Proposition 6.6 can be restated as follows: If R is k-bounded

and 1 6∈ spec(R), then R is essentially bk2 c-bounded. The method above can be
modified to show the following general results.
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Theorem 6.9. Let k > 1 and R be a bounded relation.

(1) If spec(R) ⊆ [k, n] for some n ≥ k, then R is essentially bnk c-bounded.
(2) If spec(R) ⊆ {1} ∪ [k, 2k − 1], then R is PC.

Proof. The proof of (1) is a modification of the proof of Proposition 6.6, in which
construction no action is taken until an equivalence class of size ≥ k is generated.
The proof of (2) is the same as that of Corollary 6.7. �

Nies [7] considered 2-bounded relations and FC relations from a different per-
spective.

Definition 6.10. For equivalence relations R1 and R2 on N, let R1 ∨ R2 denote
the join of R1 and R2, which is the smallest equivalence relation containing both
R1 and R2.

Nies proved a Join Theorem which states that for any ceer R there are 2-bounded
relations R1 and R2 such that R = R1 ∨R2 and R1 ∩R2 = ω.

7. The saturation jump operator

Throughout this section we will consider equivalence relations defined on the set
of all finite subsets of N, or in usual notation, on [N]<ω. There is a computable
bijection between [N]<ω and N, therefore we continue to regard the universe of our
equivalence relations to be formally N. However, it turns out to be less confusing
to work with the space [N]<ω for the equivalence relations we are to define in this
section.

Definition 7.1. Let R be a ceer on N and let X ⊆ N. The R-saturation of X is
defined by

[X]R = {y ∈ N | ∃x ∈ X(xRy)}.

Definition 7.2. Let R be a ceer on N. The saturation jump of R, denoted by R+,
is an equivalence relation on [N]<ω defined by

xR+y ⇔ [x]R = [y]R.

For n ∈ N, the n-th saturation jump of R is inductively defined by

R0+ = R
R1+ = R+

R(n+1)+ = (Rn+)+

Again, formally the universe of each Rn+ is N, but it is also natural to indentify
the elements as hereditarily finite sets of depth n. For example, the universe of R2+

could then be identified as the collection of finite sets of finite sets.
The reader should be warned about the choice of the word “jump” for the name

of the operator. Although it is obvious that R ≤ R+ always holds, it is not true
that for any ceer R, R < R+. In fact, if R is computable, then so is R+. Below let
us collect some basic facts about the saturation jump operator.

Proposition 7.3. Let E, E1 and E2 be arbitrary ceers and n ∈ N.

(1) If E1 ≤ E2, then En+1 ≤ En+2 .
(2) If E is FC, then so is En+.
(3) If E is CC, then so is En+.
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(4) If E has the property that every pair of distinct E-classes are computably
separable, then so does En+.

(5) E and En+ as sets have the same Turing degree.

Proof. Without loss of generality assume n = 1. (1)-(3) and (5) are obvious. For
(4), let ¬xE+y and assume without loss of generality that a ∈ x is such that ∀b ∈ y,
¬bEa. For each b ∈ y, let Ab be a computable set separating [b]E from [a]E . Let
A =

⋃
b∈y Ab. Then A is computable. It follows that the set {z ∈ [N]<ω | ∃u ∈

z(u 6∈ A)} is computable and it separates [x]E+ from [y]E+ . �

Next we consider essentially bounded relations and show that the saturation
jump operator behaves properly on these relations.

Theorem 7.4. If E is essentially bounded and non-computable, then E < E+.

Proof. Suppose B is k-bounded and f is computable witnessing that E ≤ B. As-
sume g witnesses E+ ≤ E. For notational simplicity we first consider k = 2. We
derive a contradiction by showing that E is computable. Given x, y ∈ N, note that

xEy ⇔ at least one pair of {x}, {y}, {x, y} are E+-equivalent
⇔ all of {x}, {y}, {x, y} are E+-equivalent
⇔ at least one pair of g({x}), g({y}), g({x, y}) are E-equivalent
⇔ all of g({x}), g({y}), g({x, y}) are E-equivalent
⇔ at least one pair of f(g({x})), f(g({y})), f(g({x, y})) are B-equivalent
⇔ all of f(g({x})), f(g({y})), f(g({x, y})) are B-equivalent
⇔ at least one pair of f(g({x})), f(g({y})), f(g({x, y})) are equal

where the last condition is computable. For general k, note that, by the same
argument as above,

xEy ⇔ at least one pair of g({x}), g({y}), g({x, y}) are E-equivalent
⇔ all of g({x}), g({y}), g({x, y}) are E-equivalent

(letting z0 = g({x}), z1 = g({y}), z2 = g({x, y})
⇔ at least one pair of g({z0}), g({z1}), g({z2}), g({z0, z1}), g({z1, z2}),

g({z0, z2}), g({z0, z1, z2}) are E-equivalent
⇔ all of g({z0}), g({z1}), g({z2}), g({z0, z1}), g({z1, z2}),

g({z0, z2}), g({z0, z1, z2}) are E-equivalent
⇔ · · · · · ·

When the iteration on the right hand side produces more than k elements, say,
w0, . . . , wm, where m ≥ k−1, we have that xEy iff at least one pair of the elements
f(w0), . . . , f(wm) are equal. This shows that E is computable, a contradiction. �

Next we demonstrate that there are many ceers whose saturation jump is no more
complicated. For this we define a general operation Rω+ for ceer R as follows. First
define by induction on n a sequence of ceers En by

〈x, 0〉E0〈y, 0〉 ⇔ xRy
〈x, i〉En+1〈y, i〉 ⇔ x = y ∨ (i ≤ n ∧ 〈x, i〉En〈y, i〉) ∨ (i = n+ 1 ∧ xE+

n y)

Eventually define Rω+ by

xRω+y ⇔ ∃n(xEny).

It is then easy to see that Rn+ ≤ Rω+ for any n ∈ N and that the properties of
Proposition 7.3 remain true for n = ω.
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Proposition 7.5. For any ceer R, (Rω+)+ ≡ Rω+. In particular, there are FC
relations R such that R+ ≡ R.

Proof. Let E = Rω+. For each x let kx be the largest i such that 〈y, i〉 ∈ x for
some y. Define a reduction function f of E+ to E by f(x) = 〈x, kx + 1〉. This f
works, since if uE+v then ku = kv and hence f(u)Eku+1f(v). On the other hand
if ¬(uE+v) then either ku 6= kv or else ¬(uEkuv), in either case ¬(f(u)Ef(v)). �

The following fact shows that the saturation jump operation is not one-one on
bi-reducibility degrees of ceers.

Proposition 7.6. There are ceers R1 and R2 such that R1 < R2 but R+
1 ≡ R

+
2 .

Proof. Let R1 and R2 be respectively defined by

〈x, 0〉R1〈x, 1〉 ⇔ x ∈ K

and

〈x, 0〉R2〈x, 1〉R2〈x, 2〉 ⇔ x ∈ K.
Then R1 ≤ R2, R1 is 2-bounded and R2 is not essentially 2-bounded by the proof
of Theorem 6.3, hence R2 6≤ R1.

To see that R+
1 ≡ R+

2 , it is enough to demonstrate a reduction from R+
2 to

R+
1 . For this let g1 and g2 be two computable functions with the property that

g1(x) 6= g2(y), ∀x, y and x ∈ K ⇔ g1(x) ∈ K ⇔ g2(x) ∈ K. Such functions are
easy to construct. Now define a computable function f such that

f(〈x, 0〉) = {〈g1(x), 0〉, 〈g2(x), 0〉},
f(〈x, 1〉) = {〈g1(x), 0〉, 〈g2(x), 1〉}, and
f(〈x, 2〉) = {〈g1(x), 1〉, 〈g2(x), 1〉}.

It is easy to see that f induces a required reduction. �

Finally some curious examples of the effect of the saturation jump operator.

Theorem 7.7. Let H be the halting equivalence. Then H < H+.

Proof. We first show that if H+ ≤ H, then H+ is PC. Suppose a computable
function f witnesses H+ ≤ H and a partial computable function ϕ witnesses H is
PC. We claim that ϕ ◦ f witnesses that H+ is PC. For this it is enough to check
that for any x, y ∈ [N]<ω with ϕ(f(x))↑ and f(x) = f(y), we have x = y. By the
definition of H, if ϕ(f(x))↑ , then [f(x)]H is a singleton. Since f is a reduction, it
follows that [x]H+ is computable. Therefore x, as a finite subset of N, consists only
of elements a with ϕa(a) ↑ . It follows then [x]H+ is a singleton, thus f(x) = f(y)
implies that x = y.

Next we show that H+ is not PC. Assume a partial computable function ψ
witnesses that H+ is PC. Then if x ∈ [N]<ω has more than one element in its H+-
class, we have ψ(x)↓ . Now pick an arbitrary element a ∈ K0, i.e., with ϕa(a)↓= 0.
Let b = ψ({a}). Consider the function f defined by f(i) = ψ({a, i}), for i ∈ N.
Then f is a total computable function. Moreover, i ∈ K0 iff f(i) = b. Since K0 is
not computable, this is a contradiction. �

Theorem 7.8. For any n ∈ N, Hn+ is not universal, i.e., Hn+ < R∞.
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Proof. Let R be a precomplete ceer. Then every pair of distinct R-equivalence
classes are computably inseparable (see, e.g. [2]). We show that R 6≤ Hn+ for any
n ∈ N. For n = 0 this was done in Proposition 3.9. We assume n ≥ 1. We use the
union operation in the sense of set theory, i.e., for a set x, let⋃

x = {z | ∃y ∈ x(z ∈ y)}.

For k ≥ 1, define inductively
⋃k+1

x =
⋃

(
⋃k

x). Now fix n ≥ 1 and assume
that f is a computable function witnessing R ≤ Hn+. For each x ∈ N, let k(x) =⋃n−1

f(x)∩K, then each k(x) is a finite subset of K. We claim that k is a constant
function. Since otherwise, there are x 6= y such that k(x) 6= k(y). Without loss of
generality assume a ∈ k(x) \ k(y). Then f(x) and f(y) are not equivalent under
Hn+, therefore ¬xRy. It follows that [f(x)]Hn+ and [f(y)]Hn+ are computably

inseparable. But this is not so, since the computable set {z | a ∈
⋃n−1

z} separates
them, a contradiction.

Now suppose the function k takes the constant value {c1, . . . , cm}. Then for each

x ∈ N,
⋃n−1

f(x)\{c1, . . . , cm} consists only of elements of K. It follows that there
is a computable function g witnessing that R ≤ ω, a contradiction. �

A similar argument, with a bit more notation, shows the same for n = ω, but
we omit it now since we will demonstrate a stronger result later.

Theorem 7.9. Let E be a finite dimensional ceer. Then for any n ∈ N, H 6≤ En+.

Proof. This is a similar argument as in the preceding proof. Without loss of gen-
erality assume E = RK0,...,Km−1 is universal m-dimensional and let R = En+.
Assume toward a contradiction that H ≤ R via f . For each x ∈ N, let Ax =⋃n−1

f(x) ∩ (K0 ∪ · · · ∪Km−1) and Bx =
⋃n−1

f(x) \ Ax. We claim that Bx is a
constant finite set for all x ∈ K. This is because, if Bx 6= By for some x 6= y ∈ K,
then [f(x)]R and [f(y)]R can be computably separated, hence [x]H and [y]H can
be computably separated, which is false. Now it follows that there is an infinite set
S ⊆ K such that for any x, y ∈ S, x 6= y, [Ax]E 6= [Ay]E . But this is impossible
since there are at most 2m many distinct [A]E with A ⊆ K0 ∪ · · · ∪Km−1. �

Theorem 7.10. Let A be hypersimple. For any n ∈ N, ω 6≤ Fn+A .

Proof. We have seen in Proposition 5.6 that the conclusion is true for n = 0.
Suppose n > 0 and assume ω ≤ Fn+A via f . We derive a contradiction by defining

a reduction g from ω to FA. Let g(0) = sup
⋃n−1

f(0). In general we will define

each g(m) as sup
⋃n−1⋃

i≤k f(i) for some k. Suppose g(m) is defined.

Let s(z, n) be defined by the recursion s(z, 0) = z and s(z, n + 1) = 2s(z,n).
Then s(z, n) dominates the number of Fn+A -equivalence classes in which there is an

element x so that sup
⋃n−1

x ≤ z.
Now let g(m+1) = sup

⋃n−1⋃
i≤s(g(m),n)+1 f(i). By the property of s mentioned

above and the assumption on f , there is some element x with g(m) < x ≤ g(m+ 1)
such that ¬(g(m)FAx). This implies that ¬(g(m+ 1)FAg(m)). �

8. The halting jump operator

In this section we introduce another jump operator which reminds us much of
the halting jump in computability theory.
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Definition 8.1. Let E be an arbitrary ceer. The halting jump of E, denoted by
E′, is the ceer defined by

xE′y ⇔ x = y ∨ ϕx(x)↓ Eϕy(y)↓

for x, y ∈ N. For any n ∈ N, the n-th halting jump of E, denoted by E(n), is
inductively defined by

E(0) = E
E(1) = E′

E(n+1) = (E(n))′

Definition 8.2. Let E be an arbitrary ceer. A ceer R is partially classifiable by
E, denoted by PCE , if there is a partial computable function ψ such that, for any
x, y ∈ N,

xRy ⇔ x = y ∨ ψ(x)↓ Eψ(y)↓ .

Then we have the following basic properties.

Proposition 8.3. Let E be an arbitrary ceer.

(1) E ≤ E′.
(2) E′ is universal for PCE relations.
(3) For n ≥ 1, id(n)′ ≡ RK0,...,Kn−1

.
(4) ω′ = H.
(5) Let R be a ceer without computable classes. If R ≤ E′ then R ≤ E

Proof. (1), (3) and (4) are obvious. (2) uses the same proof as that of Proposition
3.8. (5) is proved in the same way as Proposition 3.9. �

Proposition 8.3 (5) implies that the halting jump of a non-universal ceer is non-
universal. This feature of the halting jump operator is also a corollary of the
following interesting result.

Theorem 8.4 (The Halting Jump Theorem). For ceers E1 and E2, E1 ≤ E2 iff
E′1 ≤ E′2.

Proof. First suppose E1 ≤ E2. Let f be a computable function such that xE1y ⇔
f(x)E2f(y), for any x, y ∈ N. First define a one-one computable function g so that
for any x, z ∈ N, ϕg(x)(z) = f(ϕx(x)). Then ϕg(x)(g(x))↓ iff f(ϕx(x))↓ , and when
this happens, they take the same value. Therefore, since g is one-one, we have

xE′1y ⇔ x = y ∨ ϕx(x)↓ E1ϕy(y)↓
⇔ x = y ∨ f(ϕx(x))↓ E2f(ϕy(y))↓
⇔ g(x) = g(y) ∨ ϕg(x)(g(x))↓ E2ϕg(y)(g(y))↓
⇔ g(x)E′2g(y)

This shows that E′1 ≤ E′2 via g.
Next suppose E′1 ≤ E′2 via f . Then we have that for any x ∈ K, f(x) ∈ K.

This is because, if f(x) 6∈ K, then [f(x)]E′2 is a singleton. Since f is a reduction, it
follows that [x]E′1 is computable; but this can only happen when x 6∈ K (if x ∈ K,
then it is easy to see that [x]E′1 would be m-complete).

Now let us fix a one-one computable function s such that ϕs(x)(s(x)) = x. Then
define a computable function g by g(x) = ϕf(s(x))(f(s(x))). g is total since for any
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x, s(x) ∈ K by definition, and therefore f(s(x)) ∈ K by the claim in the preceding
paragraph. Finally,

xE1y ⇔ s(x)E′1s(y) (by definition of s)
⇔ f(s(x))E′2f(s(y))
⇔ g(x)E2g(y) (by definition of E′2 and g)

Therefore E1 ≤ E2. �

Corollary 8.5.

(1) For ceers E1 and E2, E1 ≡ E2 iff E′1 ≡ E′2.
(2) If E is non-universal, then E′ is non-universal.
(3) For any ceer E, exactly one of the following holds:

i) for any n ∈ N, E(n) ≡ E;
ii) for any n ∈ N, E(n) < E(n+1).

(4) For any n ∈ N, H(n) < H(n+1).
(5) For any n ∈ N, the sets {e |Re ≤ H(n)}, {e |Re ≥ H(n)} and {e |Re ≡

H(n)} are all Σ3-complete.
(6) The set {e |Re is PC} is Σ3-complete.

Proof. (1) and (2) are immediate. For (3), note that E ≤ E′ ≤ · · · ≤ E(n) ≤
E(n+1) ≤ . . . . If ii) fails, then for some n ∈ N, E(n+1) ≤ E(n); by applying Theorem
8.4 n times, we have E′ ≤ E, therefore E ≡ E′, which implies that E(n) ≡ E for
any n ∈ N. (4) follows immediately from (3) since ω < H = ω′. (5) follows
immediately from Propositions 4.7-4.10. For (6) a straightforward computation
shows that the set is Σ3. It is then easy to check that if We is computable, then
RWe

is PC. The Halting jump theorem implies that if We is not computable, then
RWe

6≤ ω′ = H, hence in particular it is not PC. Thus we have a reduction of Comp
to {e |Re is PC}. �

The next few theorems deal with bounded relations and their halting jumps.

Theorem 8.6. Let n ∈ N and R be an n-bounded relation. Then there is an
bn2 c-bounded relation S such that R ≤ S′. Equivalently, Bn∞ ≤ (B

bn2 c∞ )′.

Proof. It is enough to define an bn2 c-bounded relation S so that R ∈ PCS , i.e., for
some partial computable function ψ,

xRy ⇔ x = y ∨ ψ(x)↓ Sψ(y)↓ .

We fix an enumeration of the pairs of distinct elements in R and define S and ψ
simultaneously. At the stage s of the enumeration let the pair (i, j) (say i < j) be
enumerated for R and suppose Ss and ψs are defined. Consider four cases:

(1) i, j 6∈ domψs. In this case extend ψs by letting ψs+1(i) = ψs+1(j) = i and
let Ss+1 = Ss.

(2) i ∈ domψs but j 6∈ domψs. In this case extend ψs by letting ψs+1(j) =
ψs(i) and let Ss+1 = Ss.

(3) i 6∈ domψs but j ∈ domψs. In this case similarly extend ψs by letting
ψs+1(i) = ψs(j) and let Ss+1 = Ss.

(4) i, j ∈ domψs. If in addition ψs(i) = ψs(j) then do nothing; just let ψs+1 =
ψs and Ss+1 = Ss. Otherwise, ψs(i) 6= ψs(j). Then let ψs+1 = ψs and
Ss+1 = Ss ∪ {(ψs(i), ψs(j))}.
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This finishes our construction of S and ψ. It follows easily from the construction
that R is PCS . Note that for any x ∈ domψ, ψ(x)Rx; in addition, there is y 6= x
with ψ(y) = ψ(x). Also note that S admits new pairs only in Case 4 above, which
implies that Ss ⊆ Rs and that every Ss-class contains at most half many elements
as the corresponding Rs-class. This implies that S is bn2 c-bounded. �

Corollary 8.7. For any n ∈ N and (2n+1 − 1)-bounded relation R, R ≤ ω(n).

Equivalently, B2n+1−1
∞ ≤ ω(n).

Proof. By induction on n. The case n = 0 is obvious. Suppose R is (2n+2 − 1)-
bounded. Then by the previous theorem there is (2n+1 − 1)-bounded relation S
such that R ≤ S′. By the inductive hypothesis S ≤ ω(n). Therefore R ≤ S′ ≤
ω(n+1). �

It might be worth noticing that Proposition 6.6 is a corollary of Theorem 8.6, and
that Corollary 6.7 is a special case of Corollary 8.7. In fact, if R is n-bounded and
every equivalence class of R is non-trivial, then the proof of Theorem 8.6 produces
a total function ψ witnessing the reduction from R to some bn2 c-bounded ceer.

Next we show that the above estimates are in some sense optimal. In dealing
with iterated halting jumps it is helpful to introduce the following notation. Let κ
denote the partial computable function κ(x) = ϕx(x), for any x ∈ N, and for any
n ∈ N let κn be the n-th iterate of κ. Then it is easy to see that, for any x, y ∈ N,

xω(n)y ⇔ ∃i ≤ n(κi(x)↓= κi(y)↓ ).

We will use the following lemma.

Lemma 8.8. Let C be a computable subset of K. Then there is a total computable
function s(x) such that κ(s(x))↓= x and s(x) 6∈ C, for any x ∈ N.

Proof. For i ∈ N let Ki = {x |κ(x) ↓= i}. Then each Ki is non-computable.
Note that for any i ∈ N, Ki 6⊆ C, since otherwise Ki would have a computable
definition from the computability of C. This shows that for any x ∈ N, the set
{y |κ(y)↓= x ∧ y 6∈ C} is nonempty. Thus we may construct a total computable s
so that for each x it returns an element from this set. �

Theorem 8.9. For any n ∈ N, B2n+1

∞ 6≤ ω(n).

Proof. We define a sequence of bounded relations En by induction on n. Let E0 be
defined by

〈x, 0〉E0〈x, 1〉 ⇔ κ(x)↓ .
Given En, define En+1 by

〈x, i〉En+1〈x, j〉 ⇔ 〈x, i〉En〈x, j〉 ∨ 〈x, i− 2n+1〉En〈x, j − 2n+1〉∨
(i, j < 2n+2 ∧ κn+2(x)↓ ).

It is easy to see that each En is 2n+1-bounded. We verify below that En 6≤ ω(n) for
any n ∈ N, therefore establishing the theorem.

For n = 0 the conclusion is obvious. Now fix an arbitrary n > 0 and assume
toward a contradiction that En ≤ ω(n) via some function f . We define by induction
on k ≤ n computable sets Ck and computable functions sk as follows. Let C0 =
{x | ∃l < 2n(f(〈x, 2l〉) = f(〈x, 2l+1〉))}. Then C0 is computable; also C0 ⊆ K since
for any x ∈ C0 there is some l < 2n such that 〈x, 2l〉En〈x, 2l+ 1〉, whereas if x 6∈ K
then ¬(〈x, i〉En〈x, j〉) whenever i 6= j. Let s0 be obtained from the preceding
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lemma for C0. Then for any l < 2n and any x, we have that f(〈s0(x), 2l〉) 6=
f(〈s0(x), 2l+1〉); but since s0(x) ∈ K and 〈s0(x), 2l〉En〈s0(x), 2l+1〉 for any l < 2n,
it follows that for any i < 2n+1, κ(f(〈s0(x), i〉)) ↓ . This finishes the definition for
the base step.

For the inductive step suppose we have defined computable set Ck ⊆ K and
computable function sk for 0 ≤ k < n with the following properties for any x ∈ N:

(a) κk+1(sk(x))↓= x;
(b) For any i < 2n+1, κk+1(f(〈sk(x), i〉))↓ .

Define Ck+1 to be the set

{x | ∃l < 2n−k−1(f(〈sk(x), l2k+2〉)ω(k+1) f(〈sk(x), l2k+2 + 2k+1〉))}.

It follows from property (b) that Ck+1 is computable. To see that Ck+1 ⊆ K,
it is enough to show that for x ∈ Ck+1, κk+2(sk(x)) ↓ . Fix x ∈ Ck+1 and
a witness l < 2n−k−1. Note that for i = l2k+2 and j = l2k+2 + 2k+1, we
have f(〈sk(x), i〉)ω(k+1)f(〈sk(x), j〉) by the definition of Ck+1. It follows that
f(〈sk(x), i〉)ω(n)f(〈sk(x), j〉) and therefore 〈sk(x), i〉En〈sk(x), j〉 since f witnesses
En ≤ ω(n). But by the definition of En, it is easy to see that if 〈y, i〉En〈y, j〉
and j − i = 2k+1, then in fact 〈y, i〉Ek+1〈y, j〉. Thus we actually have that
〈sk(x), i〉Ek+1〈sk(x), j〉. On the other hand, by the definition of Ek and the fact
that Ek is 2k+1-bounded, ¬(〈sk(x), i〉Ek〈sk(x), j〉) and ¬(〈sk(x), i−2k+1〉Ek〈sk(x), j−
2k+1〉). It follows from the definition of Ek+1 that we must have κk+2(sk(x))↓ .

Let s′ be obtained from the preceding lemma for Ck+1 and let sk+1(x) =
sk(s′(x)). We verify that properties (a) and (b) are preserved by this definition.
(a) is immediate, since

κk+2(sk+1(x))↓= κ(κk+1(sk(s′(x))))↓= κ(s′(x))↓= x.

For (b), first note that for any i < 2n+1, κk+1(f(〈sk+1(x), i〉)) ↓ by the defini-
tion of sk+1. Thus if k + 1 = n there is nothing to check. Suppose k + 1 <
n. For any x, s′(x) 6∈ Ck+1, therefore, for any l < 2n−k−1, p = l2k+2 and
q = p + 2k+1, we have that ¬(f(〈sk+1(x), p〉)ω(k+1) f(〈sk+1(x), q〉)). By the in-
ductive definition of Ek+1 this implies that for any i < 2n+1 there is j < 2n+1,
j 6= i, such that ¬(f(〈sk+1(x), i〉)ω(k+1) f(〈sk+1(x), j〉)). By property (a) for
sk+1, we know that 〈sk+1(x), i〉En〈sk+1(x), j〉, for all i, j < 2n+1. Therefore
f(〈sk+1(x), i〉)ω(n) f(〈sk+1(x), j〉), for all i, j < 2n+1. Thus κk+2(f(〈sk+1(x), i〉)↓
for any i < 2n+1.

In effect we have defined Ck, sk which satisfy properties (a) and (b) for k < n, and
Cn, sn with property (a) only. We have that 〈sn(x), 0〉En〈sn(x), 2n〉 by the property
(a) for sn. However, for any x, we also have ¬(f(〈sn(x), 0〉)ω(n) f(〈sn(x), 2n〉)).
This contradicts the assumption that f is a reduction from En to ω(n). �

We have established in Corollary 8.7 that all bounded relations are reducible to
some ω(n). Next we show that FC relations are not necessarily so.

Theorem 8.10. Let A be hypersimple. Then for any n ∈ N, FA 6≤ ω(n).

Proof. By induction on n. For n = 0 the conclusion is trivial. Suppose now
FA 6≤ ω(n) but FA ≤ ω(n+1) via some computable function f . Therefore for any
x, y ∈ N,

xFAy ⇔ ∃i ≤ n+ 1(κi(f(x))↓= κi(f(y))↓ ).
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Note that there are infinitely many pairs (x, y) such that xFAy but κn(f(x)) ↓ 6=
κn(f(y)) ↓ . This is because, if it were not the case, then one could modify f by
changing its values at finitely many points so as to get that FA ≤ ω(n), contradicting
our hypothesis. Also note that the (infinite) set of all pairs with the above property
is c.e. Let us fix a non-repeating computable enumeration of this set and denote
its k-th element by (xk, yk).

Now we define a computable function g as follows. Let g(0) = x0. For i > 0 let
g(i) be the first element of the sequence x0, y0, x1, y1, . . . such that for any j < i,
κn+1(f(g(j)) 6= κn+1(f(g(i)). Note that the definition makes sense because for
each element z in the above sequence κn+1(f(z))↓ , and because FA is FC.

Thus g is a total computable function with the property that if i 6= j, then
κn+1(f(g(i))↓ 6= κn+1(f(g(j))↓ , hence ¬(g(i)FAg(j)). This shows that ω ≤ FA via
g, a contradiction to Proposition 5.6. �

Corollary 8.11. If A is hypersimple, then FA is not essentially bounded.

Proof. This follows from the preceding theorem and Corollary 8.7. �

Corollary 8.5 (6) can also be seen as an immediate corollary of Theorem 8.10 by
using the theorem of Dekker we quoted earlier in the proof of Lemma 4.9.

From the alternative definition of ω(n) using partial computable functions κ and
its iterates we can define a natural limit of the ω(n)’s when n approaches infinity.
Let ω(ω) be the ceer defined by

xω(ω)y ⇔ ∃i(κi(x)↓= κi(y)↓ )

for any x, y ∈ N. One may wonder if FA ≤ ω(ω) for hypersimple A. We show next
that this is indeed the case. In fact, ω(ω) is universal for all ceers.

We need the following lemma.

Lemma 8.12. For any partial computable function ψ there is a one-one total
computable function v such that

κ(v(x)) = v(ψ(x)), for any x ∈ N.

Moreover, an index for v can be obtained effectively from an index of ψ.

Proof. Let s(e, i) be a one-one total computable function such that

ϕs(e,〈y,x〉)(u) = ϕe(ϕy(x)).

Let t(e) be a computable function such that ϕt(e)(i) = s(e, i). By the fixed point
theorem there is e0 such that ϕt(e0) = ϕe0 . Then

ϕs(e0,〈y,x〉)(u) = ϕe0(ϕy(x)) = ϕt(e0)(ϕy(x)) = s(e0, ϕy(x)).

Let r(y) be a computable function such that ϕr(y)(x) = 〈y, ψ(x)〉. By the fixed
point theorem again, there is y0 such that ϕr(y0) = ϕy0 . Then ϕy0(x) = ϕr(y0)(x) =
〈y0, ψ(x)〉. Therefore

ϕs(e0,〈y0,x〉)(u) = s(e0, ϕy0(x)) = s(e0, 〈y0, ψ(x)〉.

Letting v(x) = s(e0, 〈y0, x〉), it is easy to check that v is as required. �

Theorem 8.13. ω(ω) is universal for all ceers.
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Proof. Let R be an arbitrary ceer. Fixing a computable enumeration of R, let Rs
be the equivalence relation on N established by stage s of the enumeration, i.e., Rs
is generated by the finitely many pairs enumerated up to stage s. Let pi be the
i + 1-th prime number. Define a total computable function ψ by ψ(psi ) = ps+1

j if

j ≤ i is the least element such that jRsi, and ψ(n) = 0 for any n not a power of
a prime. Let v be the one-one total computable function given by the preceeding
lemma. Let f(i) = v(pi). We claim that f is a reduction function from R to ω(ω).

It is easy to see that, for any i, j ∈ N,

iRj ⇔ ∃s(ψs(pi)↓= ψs(pj)↓ ).

By induction on s one can also see that κs(f(i)) = κs(v(pi)) = v(ψs(pi)). Since v
is one-one, we have that ψs(pi)↓= ψs(pj)↓ iff κs(f(i))↓= κs(f(j))↓ . �

We do not know if there are non-universal ceers R with R′ ≡ R. But the following
proposition suggests that it is probably unlikely.

Proposition 8.14. If R′ ≡ R then ω(n) < R for any n ∈ N.

Proof. Since 1 ≤ R and ω < 1′ = RK , we have that ω(n) < 1(n+1) ≤ R(n+1). But
if R′ ≡ R then R(n+1) ≡ R. Hence ω(n) < R. �

9. Incomparability between the jump operators

In this section we show that the saturation jump operator and the halting jump
operator produce incomparable ceers in a very strong sense. A typical instance is
still the halting equivalence relation.

Theorem 9.1. For any n ∈ N, H+ 6≤ H(n).

Proof. For n = 0 this is the content of Theorem 7.7. Assume n ≥ 1 and assume
toward a contradiction H+ ≤ H(n) via f . Let s(x) be a one-one computable
function such that κ(s(x)) ↓= x for all x ∈ N. Let h(x) be a one-one computable
function such that κ(h(x)) = κ(x) + n for all x ∈ N. For x = {x1, . . . , xm}
define g(x) = {s(0), . . . , s(n−1), h(x1), . . . , h(xm)}. Then xH+y ⇔ g(x)H+g(y)⇔
f(g(x))H(n)f(g(y)) for any x, y ∈ N<ω.

We claim that for any x ∈ N<ω, κn(f(g(x)) ↓ . Granting the claim, we would
have f(g(x))H(n)f(g(y))⇔ κn(f(g(x)))Hκn(f(g(y)), which implies that H+ ≤ H,
a contradiction. To establish the claim, we prove a stronger statement that for
k ≤ n− 1 and any x ∈ N<ω, κk+1(f({s(0), . . . , s(k)} ∪ x))↓ .

The proof of the statement is by induction on k ≤ n− 1. For k = 0 we need to
see that κ(f({s(0)}∪x))↓ for all x. Assume not, there would be some x0 such that
[f({s(0)}∪x0)]H(n) is a singleton and therefore [{s(0)}∪x0]H is computable, which
is impossible. In general suppose the statement is true for k and k + 1 ≤ n − 1.
Then for any x, κk+1(f({s(0), . . . , s(k + 1)} ∪ x)) ↓ by the inductive hypothesis.
Suppose for some x0 κ

k+2(f({s(0), . . . , s(k+1)}∪x0))↑ . Without loss of generality
assume [x0]H ∩ [{s(0), . . . , s(k + 1)}]H = ∅. Then for any y ∈ N,

κ(y)↓= k + 1 ⇔ ({s(0), . . . , s(k + 1)} ∪ x0)H+ ({s(0), . . . , s(k), y} ∪ x0)
⇔ f({s(0), . . . , s(k + 1)} ∪ x0)H(n) f({s(0), . . . , s(k), y} ∪ x0)
⇔ κk+1(f({s(0), . . . , s(k + 1)} ∪ x0)) =

κk+1(f({s(0), . . . , s(k), y} ∪ x0))

Since the computations on the last line are all convergent, this gives a decision
procedure for Kk+1 = {y |κ(y)↓= k + 1}, a contradiction. �
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On the other hand, it is also true that H ′ 6≤ Hn+ for any n ∈ N. In fact we
demonstrate a slightly stronger result.

Theorem 9.2. H ′ 6≤ Hω+.

Proof. Instead of considering the formal definition of Hω+ it is more convenient to
view the universe of Hω+ as the set of all finite trees with terminal nodes labeled
by natural numbers. For such a tree t denote its set of labels for terminal nodes by
Nt.

Now the proof uses a similar argument as that of Theorem 7.8. Assume H ′ ≤
Hω+ via f . Let s(x) be a computable function such that κ(s(x))↓= x, for any x ∈
N. Then for any x, y ∈ N, xHy ⇔ s(x)H ′s(y)⇔ f(s(x))Hω+f(s(y)). Now for any
x ∈ N, let Ax = Nf(s(x))∩K and Bx = Nf(s(x))\Ax. We have that Bx is a constant
finite set for all x ∈ N, because otherwise it would follow that for some x0 6= y0 the
sets [s(x0)]H′ and [s(y0)]H′ are computably separable, which is impossible. It then
follows that it is computable to decide whether f(s(x))Hω+f(s(y)), which in turn
implies that H is computable, a contradiction. �

Corollary 9.3. Hω+ is not universal for all ceers.

There is an interesting contrast between Corollary 9.3 and Theorem 8.13.

10. Open problems

To motivate further research let us mention the following problems which seem
to be unsolved.

Problem 10.1. Is being universal a Σ3-complete property among ceers?

Problem 10.2. Is there a non-universal ceer E with E ≡ E′?

There are other, more techinical problems we encountered in our research. But
the above ones seem to be the most significant problems we know of. Also, in this
paper we have been focusing on the general theory of reducibility among ceers, not
paying too much attention to the applications of this theory. Most of the natural
examples of ceers arise in algebra and logic. For example, the word problems on
finitely presented algebraic structures are essentially ceers. The classical unsolvabil-
ity results usually deal with a single equivalence class. New problems emerge when
they are investigated as ceers and when the strong reducibility notion is involved.
As an example let us mention the following problem.

Problem 10.3. Is the following statement true: for any ceer R there is a finitely
presented semigroup whose word problem as a ceer is bi-reducible to R?

It is obvious that a similar statement for finitely presented groups is false, since
if the word problem for a group is CC then it has to be computable.

Finally let us mention that the idea of considering reducibility between equiva-
lence relations as a framework for the study of complexity of classification problems
can also be applied elsewhere. For example, we could consider feasibly computable
reductions between computable equivalence relations and develop a parallel the-
ory as did in this paper. Such a theory would probably shed light on structural
complexity theory and provide deeper understanding of the open questions in the
field.
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