
December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

Harrington’s Solution to McLaughlin’s Conjecture and Non-uniform

Self-moduli*

Peter M. Gerdes†

Department of Mathematics

University of Notre Dame du Lac

Notre Dame, Indiana 46556

While much work has been done to characterize the Turing degrees computing members
of various collections of fast growing functions, much less has been done to characterize

the rate of growth necessary to compute particular degrees. Prior work has shown that

every degree computed by all sufficiently fast growing functions is uniformly computed
by all sufficiently fast growing functions. We show that the rate of growth sufficient for

a function to uniformly compute a given Turing degree can be separated by an arbitrary

number of jumps from the rate of growth that suffices for a function to non-uniformly
compute the degree. These results use the unpublished method Harrington developed

to answer McLaughlin’s conjecture so we begin the paper with a rigorous presentation

of the approach Harrington sketched in his handwritten notes on the conjecture. We
also provide proofs for the important computability theoretic results Harrington noted

were corollaries of this approach. In particular we provide the first published proof of

Harrington’s result that there is an effectively given sequence of 𝛱0
1 singletons that are

𝐿𝑜𝑤𝛼 none of which is computable in the effective join of the 𝛼 jumps of the others for

every 𝛼 <𝒪 𝜔𝑐𝑘
1 .

Keywords: Implicit Definability;𝛱0
1 Classes;Fast Growing Functions;Turing Degrees

Mathematics Subject Classification 2010: 03D55, 03D60

1. Introduction

1.1. Remarks

While this paper was drafted to convey a result of the author’s the first half of this

paper is devoted to the presentation of Harrington’s results from [1] as the technique

he used to settle McLaughlin’s conjecture is needed for the author’s result and has

never before appeared in print. The author would like to make absolutely clear

that these results are Harrington’s alone, but as Harrington’s notes are quite sparse

and the way in which he anticipated filling in the details has faded with time, the

details are, for good or ill, the author’s own. In addition to various assorted details

the technical results in Appendix A on nice ordinal notations and the modifications

required to prove lemma 3.8 and corollary 3.2 true are of the author’s devising

*Preprint of an article submitted for consideration in Journal of Mathematical Logic in 2010. On
acceptance copyright will be assigned to World Scientific Publishing Company
†Partially Supported by NSF EMSW21-RTG-0739007 and EMSW21-RTG-0838506

1

http://www.worldscinet.com/jml/

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

2

and it is unclear what it any resemblance they might bear to Harrington’s original

conception of these proofs. Once Harrington’s method has been presented the second

half of the paper will revert to a more standard style and provide a brief review

of previously published literature on fast growing functions and Turing degrees

followed by the author’s own results in this area.

1.2. Notation & Background

The notation we use is largely standard. We use ⟨𝑥, 𝑦⟩ to denote the integer code of

the pair (𝑥, 𝑦),
⨁︀

𝑖∈𝜔 𝐴𝑖 for the set whose 𝑖-th column is 𝐴𝑖, and 𝐶 to denote the

compliment of 𝐶.

A string is a member of 𝜔<𝜔 and trees subsets of 𝜔<𝜔 closed under initial

segments. When we need to distinguish between strings and their integer codes

we write p𝜎q for the code of 𝜎. We use 𝜎 | 𝜏 and 𝜎 - 𝜏 to denote that 𝜎, 𝜏 are

incompatible and compatible respectively and write 𝜎 𝜏 to denote the concatenation

of the two strings. |𝜎| gives the length of 𝜎 and 𝜎− denotes the longest proper initial

segment of 𝜎. The set of (infinite) paths through a tree 𝑇 is denoted [𝑇] and 𝑇 ⟨∞⟩ is

the set of strings in 𝑇 extended by some infinite path. We call functions from 𝜔<𝜔

to 𝜔<𝜔 monotonic if it is an isomorphism of the partial ordering (on it’s domain

and range. We abuse notation and use 𝑇 �𝑛 to denote the members of 𝑇 of length at

most 𝑛 and write 𝜃(𝑓) for
⋃︀

𝜎⊂𝑓 𝜃(𝜏) when 𝜃 is monotonic and total on {𝜎|𝜎 ⊆ 𝑓}.

Kleene’s set of ordinal notations is 𝒪, the canonical ordering of notations is ≤𝒪
and + gives the effective sum of notations. When 𝜆 is a limit notation we denote the

𝑛-th element of the effectively given increasing sequence defining 𝜆 by 𝜆[𝑛]. We write
𝒞𝛴𝛼 and 𝒞𝛱𝛼 for the collections of computably 𝛴𝛼 and 𝛱𝛼 formulas and 𝒞𝛴𝑋

𝛼 and
𝒞𝛱𝑋

𝛼 when a predicate for membership in 𝑋 is introduced into the language. We

use
⋁︀⋁︀

and
⋀︀⋀︀

to denote infinite disjunction and infinite conjunction respectively.

We refer the reader to [2, 3] for more on computable infinitary formula and to [4]

for more on 𝒪.

We do introduce a few non-standard pieces of notation particular to the subject

matter. Given partial functions 𝑟, 𝑝 we write 𝑟 ≫ 𝑝 if 𝑟(𝑥) ≥ 𝑝(𝑥) whenever they are

both defined. When 𝑓 and 𝑔 are total functions we read 𝑓 ≫ 𝑔 as 𝑓 majorizes 𝑔. We

say 𝑓 dominates 𝑔 if some 𝑓* differing from 𝑓 at finitely many locations majorizes

𝑔.

We indicate the local forcing relation on 𝑇 ⟨∞⟩ by
𝑇 and it’s relativization to

0(𝛽) by
0(𝛽)

𝑇 and refer the reader to [2] for the definitions of the standard forcing

relation
 and [5] for local forcing. Informally,
𝑇 is defined in the same manner

as
 except with all quantifications over 𝜔<𝜔 replaced with quantification’s over

𝑇 ⟨∞⟩ (nodes in 𝑇 that extend to paths). When we extend the usual language of

forcing by introducing a predicate symbol for membership in 𝑋 we write 𝜎
𝑋
𝑇 𝜑

to indicate that 𝜑 can check membership in 𝑋 as an atomic operation. Usually the

set 𝑋 we are forcing relative to will be clear from context and we will simply write

𝜎
𝑇 𝜑. When 𝑔
𝑋
𝑇 𝜑 or 𝑔
𝑋

𝑇 ¬𝜑 for every 𝜑 in 𝒞𝛴𝑋
𝛽 we say that 𝑔 is 𝛽 generic on

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

3

𝑇 relative to 𝑋. We will take our forcing relation to denote strong forcing, that is

𝜎 forces 𝜑 ∈ 𝒞𝛴0(𝛽)

1 sentences only when 𝜎 |= 𝜑, i.e., 𝜑 is satisfied by referring only

to information in 𝜎.

It is important to note that our notion of 𝑓 being 𝛼 generic on 𝑇 does not require

𝑓 to force all 𝒞𝛴𝑇 ⟨∞⟩

𝛼 facts or their negations as some definitions of genericity on

a tree require [6] but only 𝒞𝛴𝛼 facts nor does it require that 𝑓 be non-isolated.

Our definition is the natural way to preserve the notion of a generic path as one

on which every truth is determined by a finite initial segment while requiring 𝛼

generic paths on 𝑇 to force all 𝒞𝛴𝑇 ⟨∞⟩

𝛼 facts or their negations extends the idea

that a generic path should be typical. Thus under our definition there is a perfect

tree 𝑇 with every path through 𝑇 𝛼 generic on 𝑇 while this would be impossible

under the other notion.

While our standard notion of forcing is concerned only with the extendable

nodes on 𝑇 we will also make use of a more effective notion that, by analogy with

the notion of strong forcing, we call super forcing on 𝑇 denoted
*𝑇 . The definition

of super forcing on 𝑇 exactly mirrors the definition in [2] of strong forcing modified

as usual to get the local forcing relation on 𝑇 instead of 𝑇 ⟨∞⟩ as above. That is for

𝜎 to force ¬𝜑 on 𝑇 requires that every 𝜏 ⊃ 𝜎 with 𝜏 ∈ 𝑇 ⟨∞⟩ satisfy ¬𝜏
𝑇 𝜑 while

for 𝜎 to strongly force ¬𝜑 on 𝑇 requires this hold for every 𝜏 ⊃ 𝜎 with 𝜏 ∈ 𝑇 . Hence

𝜎
*0(𝛽) 𝜑 for 𝜑 ∈ 𝒞𝛴0(𝛽)

𝛼 is 𝛴0,𝑇⊕0(𝛽)

𝛼 and 𝛱0,𝑇⊕0(𝛽)

𝛼 for 𝜑 ∈ 𝒞𝛱0(𝛽)

𝛼 .

2. Harrington’s Refutation of McLaughlin’s conjecture

In [1] Harrington answered McLaughlin’s conjecture in the negative and we will

adapt his construction to establish theorem 4.3 but we first present his approach.

While other variations on the theme have been called McLaughlin’s conjecture the

form of the conjecture refuted by Harrington in [1] is the one appearing in [7] that

asserts:

Conjecture 2.1 (Mclaughlin). Every element of a countable arithmetic subset

of 𝜔𝜔 is an arithmetic singleton.

Harrington’s refutation consisted of the following theorem.

Theorem 2.1 (Harrington). For every computable tree 𝑇𝜔 ⊂ 𝜔<𝜔 is a com-

putable tree 𝑇 ⊂ 𝜔<𝜔 such [𝑇] and [𝑇𝜔] are homeomorphic and every 𝑓 ∈ [𝑇] is

arithmetically (< 𝜔) generic on [𝑇].

Corollary 2.1. Mclaughlin’s Conjecture is false.

We sketch how Harrington’s result contradicts McLaughlin’s conjecture.

Proof. Let 𝑇𝜔 have some non-isolated path 𝑓𝜔. Thus the homeomorphic image of

𝑓𝜔, 𝑓 is a non-isolated path through 𝑇 . Now suppose that 𝜑(𝑔) is an arithmetic

predicate with unique solution 𝑓 . By genericity we must have 𝑓
𝑇 𝜑 hence some

𝜎 ⊂ 𝑓 forces 𝜑. As 𝑓 non-isolated there is some 𝑓 ′ ̸= 𝑓 also extending 𝜎. At 𝑓 ′ is

also < 𝜔 generic on 𝑇 and 𝑓 ′
𝑇 𝜑 we have 𝜑(𝑓 ′). Contradiction.

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

4

2.1. Sketch of the result for 𝜔

Once we know that Harrington’s result is true the natural approach for a recursion

theorist is simply to go out and build 𝑇 as some kind of distorted copy of 𝑇𝜔 while

trying to meet the genericity requirements. The natural approach would be to simply

go ahead and try to build 𝑇 directly but of course if that worked straightforwardly

the conjecture would likely never have remained open for as it did. In particular

the ‘nested’ nature of the genericity requirements makes direct construction of 𝑇

extremely difficult. To force 𝒞𝛴𝑛+1 facts about 𝑓 we need to react to the particular

way we’ve failed to force 𝒞𝛴𝑛 facts about 𝑓 . Were we building 𝑓 to be fully generic

there would be no question about how 𝑓 forced 𝒞𝛴𝑛 and 𝒞𝛱𝑛 facts. We could

simply read off from the definition of forcing whether a given 𝜎 ⊂ 𝑓 forced some

instance 𝜑(𝑥) of a 𝒞𝛱𝑛 formula and simply require 𝑓 to extend some appropriate

𝜎′ ⊃ 𝜎. But as we clearly can’t build our desired 𝑓 to be even fully 1-generic here we

must sometimes bring it about that 𝜎 ⊂ 𝑓 forces some 𝒞𝛱𝑛 formula ¬𝜑(𝑥) despite

the fact that 𝜑 is true on a co-meager set in 𝜔𝜔 by pruning from 𝑇 all extensions

of 𝜎 that force 𝜑. Doing this on it’s own while keeping 𝑇 computable would be

organizationally difficult but if we are to keep [𝑇] = [𝑇𝜔] we must somehow also

anticipate when our commitment to somehow copy 𝑇𝜔 will be incompatible with

trying to force a sentence in a particular direction. Therefore, rather than a frontal

assault Harrington described how we can attack the problem in reverse in a manner

that provides all our organization for free.

The approach taken by Harrington rests on projecting down 𝑇𝜔 to a sequence

on intermediate trees 𝑇𝑛 with 𝑇 = 𝑇0. Each 𝑇𝑛 will be computable in 0(𝑛) and 𝑇
⟨∞⟩
𝑛

will be the image of 𝑇
⟨∞⟩
𝑛+1 under 𝜃𝑛+1 ≤T 0(𝑛+1) where 𝜃𝑛+1 is monotonic and thus

a homeomorphism from [𝑇𝑛+1] to [𝑇𝑛]. Furthermore if 𝑓 ∈ [𝑇𝑛+1] and 𝑓 is 𝑚 generic

relative to 0(𝑛+1) on 𝑇𝑛+1 then 𝜃𝑛+1(𝑓) is 𝑚+1 generic relative to 0(𝑛) on 𝑇𝑛. Thus

if this construction succeeds every 𝑓 ∈ [𝑇0] is 𝑚 generic on [𝑇0] for every 𝑚 ∈ 𝜔 as

it’s the image of some 𝑓𝑚 ∈ 𝑇𝑚 under 𝜃𝑚 ∘𝜃𝑚−1 ∘ . . . 𝜃1 which we abbreviate as 𝜗𝑚0 .

To ensure that 𝑇0 is homeomorphic with 𝑇𝜔 Harrington also required that

𝑇𝑛�𝑚 = 𝑇𝜔�𝑚 and that |𝜃𝑛(𝜎)| ≥ |𝜎|. Now define 𝜗𝜔0 (𝜎) to be 𝜗
|𝜎|
0 (𝜎) and note

that 𝜗𝜔0 (𝜎) ∈ 𝑇0 ⇐⇒ 𝜎 ∈ 𝑇𝑚 ⇐⇒ 𝜎 ∈ 𝑇𝜔. Hence 𝜗𝜔0 (𝜎) is clearly a continuous

bijection between 𝑇𝜔 and 𝑇0 = 𝑇 . The only remaining problem is to construct such

a sequence. The trick here is to observe that 𝑇0�𝑙 depends (more or less) only on 𝑇1�𝑙
and 𝑇1�𝑙 depends only on 𝑇2�𝑙 and so on. Thus 𝑇0 can be built by looking only at

𝑇𝑙�𝑙 = 𝑇𝜔�𝑙. This argument isn’t too difficult to formalize in terms of the recursion

theorem but unfortunately many of the important applications, including the ones

we use later in this paper, depend on proving the result with an arbitrary com-

putable ordinal 𝛼 substituted for 𝜔 so we must give the fully general construction.

As we will see that while conceptually identical the technical details Harrington

avoided spelling out are definitely not trivial.

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

5

3. Harrington’s Result

Theorem 3.1 (Harrington). For every ordinal notation 𝛼 and tree 𝑇 ≤T 0(𝛼)

there is a computable tree 𝑇0 such [𝑇0] and [𝑇] are homeomorphic and every 𝑓 ∈ [𝑇0]

is 𝛼 generic on [𝑇].

3.1. Preliminaries

While this tells us how to copy 𝑇𝜆�𝑙 down to lower trees it’s no longer obvious how

much we should copy. To extend Harrington’s argument to a sequence of length 𝛼

we will need to somehow specify an integer l(𝛽) for every 𝛽 <𝒪 𝛼 telling us how

much of 𝑇𝛽+1 we should copy down to 𝑇𝛽 . We need to ensure that 𝑇𝜆 will be the

limit of 𝑇𝛽 for 𝛽 <𝒪 𝜆 so [𝑇0] = [𝑇𝛼] and that we can define 𝑇𝜆[𝑛]
�l(𝜆[𝑛]) from only

𝑇𝜆[𝑛]
to ensure our fixed point is non-empty so we must have:

[∀ 𝛾]
(︀
𝜆[𝑛] ≤𝒪 𝛽 <𝒪 𝜆 =⇒ l(𝜆[𝑛]) ≤ l(𝛽)

)︀
(3.1)

lim
𝑛→∞
l(𝜆[𝑛]) = ∞

For concreteness we will also insist that

l(𝛽) =

{︃
0 if 𝛽◇ =↑
l(𝛽◇) + 𝑛 if 𝛽 = 𝛽◇

[𝑛]

(3.2)

The difficulty in achieving these conditions is that in general a notation 𝛽 could

appear at arbitrary places in the effective limit for arbitrarily many 𝜆 >𝒪 𝛽. A

further difficulty is posed by the need to build a single function l(𝛽) defined on a

path through 𝒪 as required by some of the corollaries. Our strategy is to associate

to each 𝛽 a unique limit notation 𝛽◇ to whose effective limit 𝛽 belongs. Since this

proof is fairly technical we delay it’s presentation until the appendix and blithely

continue assuming we have a computable function l(𝛽) satisfying the above (below

𝛼) and that every 𝛽 appears in at most one effective limit (below 𝛼) denoted 𝛽◇

(extended to be total, increasing, limit valued). This is slightly inaccurate, but we

reserve those qualifications for the appendix.

This resolves the problem of how much to copy but we don’t yet know exactly

what to copy. In the sketch of theorem 2.1 we had a computable tree 𝑇𝜔 but in

general at limit stages 𝑇𝜆 will only be computable in 0(𝜆) but we will still need to

copy 𝑇𝜆�l(𝜆[𝑛]) down to 𝑇𝜆[𝑛]
≤T 0(𝜆[𝑛]). We show that we can always convert our

trees to a form in which the segments requiring copying can always be uniformly

recovered from the appropriate degree.

Definition 3.1. Say the tree 𝑇𝛽 ≤T 0(𝛽) is uniform if 𝑇𝛽�l(𝛽[𝑛]) is uniformly com-

putable from 0(𝛽[𝑛]) for all 𝑛.

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

6

Converting 𝑇𝜆 into a uniform tree simply requires we delay killing branches in

𝑇𝜆 until they are long enough that we can use enough of 0(𝜆) to verify the branch

gets killed.

Lemma 3.1. Suppose 𝑇𝜆 ≤T 0(𝜆), 𝑇𝜆�l(𝜆) = 𝑇𝜆◇�l(𝜆) and 𝑇𝜆◇ is uniform then there

is a uniform 𝑇𝜆 with [𝑇𝜆] = [𝑇𝜆] and 𝑇𝜆�l(𝜆) = 𝑇𝜆�l(𝜆). Furthermore, this holds with

all possible uniformity.

Proof. As 𝑇𝜆◇ is uniform we may let 𝑇𝜆�l(𝜆) = 𝑇𝜆�l(𝜆) without difficulty. Now given

𝜎 ∈ 2<𝜔 with l(𝜆) < |𝜎| = 𝑙 place 𝜎 ∈ 𝑇𝜆 unless some computation showing that

𝜎 ̸∈ 𝑇𝜆 converges in at most 𝑙 many steps while consulting only those columns of

0(𝜆) that encode 0(𝛾) for 𝛾 ≤𝒪 𝜆[𝑙]. The uniformity is evident in the proof.

For the remainder of the paper we will apply the preceding lemma without

comment and assume without comment that any needed conversion of this kind is

done behind the scenes.

3.2. The Desired Sequence

In this section we fix some ordinal notation 𝛼 and work to build a tower of trees

⟨⟨𝑇𝛽⟩⟩𝛽≤𝒪𝛼 as we sketched for 𝜔 (technically speaking 𝛼 isn’t truly arbitrary only

the ordinal it denotes is). We first describe the properties of the trees we seek to

build. At each 𝛽 we will try to build our tree 𝑇𝛽 ≤T 0(𝛽) so that every path meets

every 𝛴0,0(𝛽)

1 set as soon as possible. We capture the effect of this construction below

with the notion of eagerly generic (meaning 1 generic over 0(𝛽)).

Definition 3.2. Say that 𝑇 ≤T 0(𝛽) is eagerly generic (over 0(𝛽)) if for all 𝑓 ∈ [𝑇]

and 𝜓 ∈ 𝒞𝛴0(𝛽)

1 there is some 𝜎 ⊂ 𝑓 such that either 𝜎 super forces 𝜓 (𝜎 witnesses

the 𝒞𝛴0(𝛽)

1 fact) or 𝜎 super forces ¬𝜓 (no 𝜏 ∈ 𝑇 (not 𝑇 ⟨∞⟩) super forces 𝜓).

Note that this immediately entails that every 𝑓 ∈ [𝑇𝛽] is 1 generic relative to 0(𝛽)

on 𝑇𝛽 and the relation 𝑓
0(𝛽)

𝑇𝛽
𝜓 is computable in 0(𝛽+1) for 𝜓 ∈ 𝒞𝛴0(𝛽)

1 ∪ 𝒞𝛱0(𝛽)

1 .

Since forcing on 𝑇𝛽 always occurs relative to 0(𝛽) we will abbreviate
0(𝛽)

𝑇𝛽
as
𝑇𝛽

or

even
𝛽 where this won’t generate confusion. We are now ready to precisely state

the conditions our trees aim to satisfy.

Definition 3.3. Say that a sequence ⟨⟨𝑇𝛽⟩⟩𝛽≤𝒪𝛼 is a downwardly generic tower (of

length 𝛼) if

1. For 𝛽 ≤𝒪 𝛼, 𝑇𝛽 ≤T 0(𝛽).

2. For 𝛽 ≤𝒪 𝛼, 𝑇𝛽 is eagerly generic over 0(𝛽).

3. If 𝛽 + 1 ≤𝒪 𝛼 there is a monotonic embedding 𝜃𝛽+1 ≤T 0(𝛽+1) of 𝑇𝛽+1 into 𝑇𝛽
that induces a homeomorphism of [𝑇𝛽+1] and [𝑇𝛽].

4. 3 and 1 hold uniformly in 𝛽.

5. 𝑇𝛽�l(𝛽) = 𝑇𝛽+1�l(𝛽).

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

7

6. If 𝜆 a limit 𝑇𝜆 = lim𝛽<𝒪𝜆 𝑇𝛽

Note that by (3.2) these last two conditions entail that 𝑇𝜆�l(𝜆) = 𝑇𝜆◇�l(𝜆). For

the remainder of this subsection we fix a downwardly generic tower ⟨⟨𝑇𝛽⟩⟩𝛽≤𝒪𝛼 of

length 𝛼 and proceed to demonstrate it has the desired properties. First we observe

that our tower preserves the topological structure of 𝑇𝛼 and provides a moderately

effective means of translation between trees at different levels.

Lemma 3.2. For every 𝛾 <𝒪 𝛽 ≤𝒪 𝛼 there is a monotonic function 𝜗𝛽𝛾 : 𝑇𝛽 ↦→ 𝑇𝛾
uniformly computable in 0(𝛽) embedding 𝑇𝛽 into 𝑇𝛾 so as to induce a homeomor-

phism of [𝑇𝛽] and [𝑇𝛾] uniquely defined by the constraints:

1. If 𝛽 <𝒪 𝛾 <𝒪 𝜆 then 𝜗𝜆𝛽 = 𝜗𝛾𝛽 ∘ 𝜗𝜆𝛾
2. 𝜗𝛽+1

𝛽 = 𝜃𝛽+1

3. If |𝜎| ≤ l(𝛽) then 𝜗𝛽
◇

𝛽 (𝜎) = 𝜎 .

Proof. We use the method of effective transfinite recursion by assuming we have

some index 𝑒 such that 𝛷𝑒(0
(𝛾); 𝛾, 𝛽, 𝜎) = 𝜗𝛾𝛽(𝜎) for every 𝛾 <𝒪 𝜅 and build a

computable function 𝐼(𝑒) so that 𝛷𝐼(𝑒)(0
(𝛾); 𝛾, 𝛽, 𝜎) = 𝜗𝛾𝛽(𝜎) for every 𝛾 ≤𝒪 𝜅 and

then use the fixed point lemma to build a single computable function working for

all 𝛾 ≤𝒪 𝛼. The behavior of 𝐼(𝑒) is spelled out plainly for 𝜅 a successor (making

use of part 4 to recover the various indexes) and for 𝜅 a limit 𝛷𝐼(𝑒)(0
(𝜅);𝜅, 𝛽, 𝜎)

computes the the value 𝛷𝑒(0
(𝜅[𝑙]);𝜅[𝑙], 𝛽, 𝜎) where 𝑙 > |𝜎| is the first such integer for

which we observe 𝜅[𝑙] >𝒪 𝛽. As l(𝜅[𝑙]) ≥ 𝑙 the fixed point of 𝐼(𝑒) plainly defines a

monotonic function for all 𝛽 <𝒪 𝛾 ≤𝒪 𝛼 mapping 𝑇𝛾 into 𝑇𝛽 . By (3.1) and part 5

of definition 3.3 any valid choice of 𝑙 yields the same result establishing uniqueness.

This leaves only the claim that 𝜗𝛽𝛾 gives a surjection of 𝑇
⟨∞⟩
𝛾 onto 𝑇

⟨∞⟩
𝛽 to verify.

Assume not and let 𝛾, 𝛽 be the lexicographically least such that the claim fails for

𝜗𝛾𝛽 . Now clearly, by the minimality of 𝛾 and property 3 of definition 3.3, 𝛾 evidently

can’t be a successor. But if 𝛾 a limit, 𝑔 ∈ [𝑇𝛽] and 𝛾[𝑙] >𝒪 𝛽 then by the minimality

of 𝛾 there is some some 𝜎𝑙 ∈ 𝑇𝛾[𝑙]
, |𝜎𝑙| = 𝑙 with 𝜗

𝛾[𝑙]

𝛽 (𝜎𝑙) ⊇ 𝑔�𝑙. By condition 3

𝜗
𝛾[𝑙+1]
𝛾[𝑙]

(𝜎𝑙+1) = 𝜎𝑙+1 for all large enough 𝑙 so by monotonicity 𝜎𝑙+1 ⊇ 𝜎𝑙 and by part

5 of definition 3.3 𝜎𝑙 ∈ 𝑇𝛾 . Thus ℎ =
⋃︀

𝑙∈𝜔 𝜎𝑙 is a path through 𝑇𝛾 with 𝜗𝛾𝛽(ℎ) = 𝑔.

With this lemma in mind we adopt the notation that if 𝑔 is a path through 𝑇0
then 𝑔𝛽 refers to the path in 𝑇𝛽 which maps to 𝑔 under 𝜗𝛽0 which we abbreviate 𝜗𝛽 .

We now work toward showing 𝑇0 will be sufficiently generic by translating 𝒞𝛴𝛽+1,
𝒞𝛱𝛽+1 formulas about 𝑔 ∈ 𝑇0 to 𝒞𝛴0(𝛽)

1 formulas about 𝑔𝛽 so that if 𝑔𝛽 forces the

translated formula on 𝑇𝛽 then 𝑔 forces the original on 𝑇0. Our strategy will be to

eliminate quantifiers from the interior of a formula by replacing 𝜓 ∈ 𝒞𝛴0(𝛾)

1 ∪𝒞𝛱0(𝛾)

1

with the 𝒞𝛴0(𝛽)

1 formula asserting that 𝜗𝛽𝛾 (𝑔𝛽) = 𝑔𝛾 forces 𝜓 when 𝛽 >𝒪 𝛾.

Definition 3.4. Given a computable infinitary formula 𝜑 we define 𝜑𝛽 inductively

as follows:

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

8

𝜑0 = 𝜑

𝜑𝛽+1 =

⎧⎪⎪⎨⎪⎪⎩
(∃𝜎 ⊂ 𝑔𝛽+1)

(︀
𝜃𝛽+1(𝜎)
𝛽 𝜑

𝛽
)︀

if 𝜑𝛽 ∈ 𝒞𝛴0(𝛽)

1 ∪ 𝒞𝛱0(𝛽)

1⋁︀⋁︀
𝑖∈𝜔 𝜓

𝛽+1
𝑞(𝑖) otherwise when 𝜑 =

⋁︀⋁︀
𝑖∈𝜔 𝜓𝑞(𝑖)

¬𝜓𝛽+1 otherwise when 𝜑 = ¬𝜓

For 𝜆 a limit

𝜑𝜆 =

⎧⎪⎪⎨⎪⎪⎩
(∃𝜎 ⊂ 𝑔𝜆)

(︀
𝜗𝜆𝛾(𝜎)
𝛾 𝜑

𝛾
)︀

if 𝜑 ∈ 𝒞𝛴𝛾 ∪ 𝒞𝛱𝛾 for 𝛾 <𝒪 𝜆⋁︀⋁︀
𝑖∈𝜔 𝜓

𝜆
𝑞(𝑖) otherwise when 𝜑 =

⋁︀⋁︀
𝑖∈𝜔 𝜓𝑞(𝑖)

¬𝜓𝜆 otherwise when 𝜑 = ¬𝜓

Lemma 3.3. If 𝜎 ∈ 𝑇
⟨∞⟩
𝛽 then 𝜎
𝛽 𝜑

𝛽 iff 𝜗𝛽(𝜎)
0 𝜑. Moreover, if 𝜑 ∈ 𝒞𝛴𝛽+1 ∪
𝒞𝛱𝛽+1 then 𝜑𝛽 ∈ 𝒞𝛴0(𝛽)

1

Proof. Fix 𝛾 to be least ordinal for which the equivalence 𝜎
𝛾 𝜑
𝛾 ⇐⇒ 𝜗𝛾(𝜎)
0

𝜑 fails to hold for some 𝜑 and let 𝜑 be the witness to this failure of least complexity.

Clearly 𝛾 ̸= 0 so first suppose 𝛾 = 𝛽 + 1.

First suppose 𝜑𝛽 ∈ 𝒞𝛴0(𝛽)

1 ∪ 𝒞𝛱0(𝛽)

1 . In this case 𝜑𝛽+1 is defined as in the first

case above so if 𝜎
𝛽+1 𝜑𝛽+1 then there must actually be some 𝜎′ ⊆ 𝜎 with

𝜃𝛽+1(𝜎′)
𝛽 𝜑
𝛽 . By monotonicity 𝜃𝛽+1(𝜎)
𝛽 𝜑

𝛽 and by the inductive hypothesis

𝜗𝛽0 (𝜃𝛽+1(𝜎)) = 𝜗𝛽+1(𝜎)
0 𝜑. Alternatively suppose that 𝜑𝛽 ̸∈ 𝒞𝛴0(𝛽)

1 ∪ 𝒞𝛱0(𝛽)

1 .

But if 𝜎
𝛽+1

⋁︀⋁︀
𝑖∈𝜔 𝜓

𝛽+1
𝑞(𝑖) then for some 𝑖 we must have 𝜎
𝛽+1 𝜓

𝛽+1
𝑞(𝑖) so by the

minimality of 𝜑 we have 𝜗𝛽+1
0 (𝜎)
0 𝜓

𝛽+1
𝑞(𝑖) and therefore 𝜗𝛽+1(𝜎)
0 𝜑

𝛽+1. Finally if

𝜑 = ¬𝜓 and 𝜎
𝛽+1 ¬𝜓𝛽+1 then again by the minimality of 𝜑 no 𝜏 ⊇ 𝜗𝛽(𝜎) in 𝑇
⟨∞⟩
0

forces 𝜓 so therefore 𝜗𝛽(𝜎)
𝑇0
¬𝜓 = 𝜑. Consequently → can’t fail at 𝛾 = 𝛽 + 1.

Going the other way if we suppose that 𝜑𝛽 ∈ 𝒞𝛴0(𝛽)

1 ∪𝒞𝛱0(𝛽)

1 and that 𝜗𝛽+1(𝜎) =

𝜗𝛽0 (𝜃𝛽+1(𝜎))
0 𝜑 then minimality ensures that 𝜃𝛽+1(𝜎)
𝛽 𝜑𝛽 so by definition

𝜎 |= 𝜑𝛽+1 holds entailing 𝜎
𝛽+1 𝜑
𝛽+1. Alternatively, suppose that 𝜗𝛽+1(𝜎)
𝑇0

𝜑 =
⋁︀⋁︀

𝑖∈𝜔 𝜓𝑞(𝑖) then for some 𝑖 we have 𝜗𝛽+1(𝜎)
𝑇0
𝜓𝑞(𝑖) so by minimality of 𝜑 we

infer 𝜎
𝛽+1 𝜓
𝛽+1
𝑞(𝑖) and therefore 𝜎
𝛽+1 𝜑

𝛽+1. Lastly if 𝜗𝛽+1
0 (𝜎)
0 𝜑 = ¬𝜓 then

by other direction no extensions of 𝜎 on 𝑇
⟨∞⟩
𝛽+1 can force 𝜓𝛽+1 or some extension of

𝜗𝛽+1
0 (𝜎) would force 𝜓 so 𝜎 must force 𝜑𝛽+1 = ¬𝜓𝛽+1.

The proof for limit stages follows by the same considerations and the last claim

follows by straightforward induction.

Lemma 3.4. Every 𝑔 ∈ [𝑇0] is 𝛼-generic on 𝑇0.

Proof. Fix 𝜑 ∈ 𝒞𝛴𝛼. By lemma 3.3 𝜑𝛼 ∈ 𝒞𝛴0(𝛼)

1 so either 𝑔𝛼 forces 𝜑𝛼 or ¬𝜑𝛼 as

every path through 𝑇𝛼 is eagerly generic so applying lemma 3.3 again we conclude

that 𝑔 forces either 𝜑 or it’s negation on 𝑇0.

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

9

3.3. The Construction

We now demonstrate the existence of a downwardly generic tower of length 𝛼. Our

construction will begin with an arbitrary tree 𝑇𝛼 computable in 0(𝛼) which we will

modify to be an eagerly generic tree 𝑇𝛼. From 𝑇𝛼 we will work downward to define

𝑇𝛽 for 𝛽 <𝒪 𝛼 by way of the following effective process.

Lemma 3.5. Given trees 𝑇𝛽+1 ≤T 0(𝛽+1) and 𝑇𝛾 ≤T 0(𝛾) with 𝛽◇ = 𝛾 there is a

tree 𝑇𝛽 ≤T 0(𝛽) with and a monotonic function 𝜃𝛽+1 such that

1. 𝑇𝛽�l(𝛽) = 𝑇𝛾�l(𝛽).
2. If 𝑇𝛽+1�l(𝛽) = 𝑇𝛾�l(𝛽) then 𝜃𝛽+1 is a monotonic embedding of 𝑇𝛽+1 into 𝑇𝛽 such

that [𝜃𝛽+1(𝑇𝛽+1)] = [𝑇𝛽]

3. 𝑇𝛽 is eagerly generic.

Furthermore indexes for 𝑇𝛽 , 𝜃
𝛽+1 are computable from the indexes for 𝑇𝛽+1 and 𝑇𝛾

via a function that is total even when passed indexes for 𝑇𝛽+1 and 𝑇𝛾 that fail to

converge on some values.

Proof. For simplicity we refer to 𝑇𝛽+1 as 𝑇 , 𝜃𝛽+1 as 𝜃 and 𝑇𝛽 as 𝑇 . We fix a 0(𝛽)

stagewise approximation to 𝑇 valid in the limit and (implicitly using lemma 3.1)

we set 𝑇 �l(𝛽) = 𝑇𝛾�l(𝛽). We set 𝜃 to be the identity on 𝑇 �l(𝛽) and pause the entire

construction at any stage where the approximation to 𝑇 doesn’t agree with 𝑇 �l(𝛽).

Thus should the condition 𝑇 �l(𝛽) = 𝑇𝛾�l(𝛽) fail, our construction eventually shuts

down and refuses to produce a useful result. Thus we’ve directly satisfied part 1 of

the lemma.

For 𝜎 extending some element in 𝑇 �l(𝛽) we define 𝜃(𝜎) to be the limit as 𝑠 goes

to infinity of 𝜃𝑠(𝜎). To ensure 𝑇 is computable from 0(𝛽) we decide whether 𝜎 is in

𝑇 at the first stage 𝑠 greater than the code of 𝜎 by placing it in 𝑇 if it is in the

range of 𝜃𝑠. At all times we maintain that if 𝜃𝑠(𝜎) is defined and 𝜏 ⊆ 𝜎 then 𝜏 ∈ 𝑇𝑠
by letting 𝜃𝑠(𝜎) become undefined if when required. If at stage 𝑠 we observe some

𝜎 = 𝜏 ⟨̂⟨𝑘⟩⟩ with code at most 𝑠 to be in 𝑇𝑠 and 𝜃𝑠(𝜏) is defined but 𝜃𝑠(𝜎) undefined

we then also define 𝜃𝑠(𝜎) = 𝜃𝑠(𝜏)ˆ⟨⟨⟨𝑘, 𝑠⟩⟩⟩.
We guarantee that 3 of the lemma holds by ensuring that if |𝜎| = 2𝑖 > l(𝛽) then

either 𝜃(𝜎) meets 𝑊 0(𝛽)

𝑖 or for all 𝜏 ∈ 𝑇 with 𝜏 ⊃ 𝜃(𝜎) 𝜏 does not meet 𝑊 0(𝛽)

𝑖 . This

is accomplished simply by letting 𝜃𝑠+1(𝜎) be redefined to equal any 𝜏 ⊃ 𝜃(𝜎) with

𝜏 ∈ 𝑊 0(𝛽)

𝑖,𝑠 ∩ 𝑇𝑠 and reseting all 𝜃𝑠+1(𝜎′) for 𝜎′) 𝜎 to undefined. Thinking of this

as a finite injury argument we note that if 𝜎 ∈ 𝑇 eventually we reach some stage

𝑡 so that at any later stage 𝑠, 𝜎 and all of it’s initial segments are members of 𝑇𝑠.

Furthermore if |𝜎| ≤ 2𝑘 then we redefine 𝜃𝑠(𝜎) no more than 2𝑘 times after stage 𝑡

in attempts to meet c.e.in 0(𝛽) sets. It is therefore clear that eventually 𝜃𝑠(𝜎) will

stabilize. Moreover, for the set of extensions of 𝜎 in 𝑇 to be infinite there must be

infinitely many stages 𝑠 in which 𝜎 was in the range of 𝜃𝑠 so if 𝜎 ⊂ 𝑔 ∈ [𝑇] then 𝜎

is in the range of 𝜃 thus part 2 of the lemma is satisfied.

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

10

The uniformity is evident from the proof, but some remarks about why the

resulting function is total even when passed partial indexes is warranted. With

respect to 𝑇𝛽+1 all that is really necessary is that eventually all members of 𝑇𝛽+1

stay in the approximation while non-members are out of the approximation at

infinitely many stages so being c.e.in 0(𝛽+1) would suffice. Since lemma 3.1 only

cared about elements being enumerated into the compliment of 𝑇𝛾 that index may

also be partial.

Note that the condition 𝑇𝛽+1�l(𝛽) = 𝑇𝛾�l(𝛽) in the above lemma is guaranteed

to be satisfied if 𝑇𝛽+1 properly copies 𝑇(𝛽+1)◇ by lemma A.1. Also remember that

should 𝛽◇ >𝒪 𝛼 we defined 𝑇𝛽◇ to be another copy of 𝑇𝛼. Since we only make use of

𝑇𝛽◇ to copy 𝑇𝛽◇�l(𝛽) we may safely pretend (by redefinition) that 𝛽◇ = 𝛼 whenever

it would otherwise be larger than 𝛼.

Lemma 3.6. Given 𝑇 ≤T 0(𝛼) there is a downwardly generic tower ⟨⟨𝑇𝛽⟩⟩𝛽≤𝒪𝛼 of

length 𝛼 with 𝑇𝛼 the effectively given image of 𝑇 .

Proof. By the same argument given in lemma 3.5 we can effectively transform 𝑇

into an eagerly generic 𝑇𝛼 ≤T 0(𝛼). Furthermore we may assume that 𝛼 is a limit

ordinal during construction by applying lemma 3.5 finitely many times until we

reached a limit level. Now fix an index 𝑖 for 𝑇𝛼 and let 𝐽(𝛽, 𝑗, 𝑗′) be the computable

function giving an index for 𝑇𝛽 given an index 𝑗 for 𝑇𝛽+1 and 𝑗′ for 𝑇𝛽◇ . We now

define a computable function 𝐼(𝑒) to behave as follows with the intent that 𝛷𝐼(𝑒)

should define a function from notations 𝛽 ≤𝒪 𝛾 to an index for 𝑇𝛽 whenever 𝛷𝑒

defines the same function on 𝛽 <𝒪 𝛾.

𝛷𝐼(𝑒)(𝛽) =

⎧⎪⎪⎨⎪⎪⎩
↑ unless 𝛽 ≤𝒪 𝛼

𝑖 if 𝛽 = 𝛼

𝐽(𝛽, 𝛷𝑒(𝛽 + 1), 𝛷𝑒(𝛽
◇)) otherwise

Fix 𝑒 to be a fixed point of 𝐼(𝑒) and let 𝑇𝛽 be the tree defined by index 𝛷𝑒(𝛽)

relative to 0(𝛽) for 𝛽 <𝒪 𝛼. Note that it is enough to show that 𝑇𝛽 is built as per

lemma 3.5 from 𝑇𝛽+1 and 𝑇𝛽◇ since lemma A.1 ensures that if 𝑇𝛽◇�l(𝛽) = 𝑇𝛽�l(𝛽)
then 𝑇𝛽+1�l(𝛽) = 𝑇𝛽�l(𝛽) and as well as that 𝑇𝜆 for 𝜆 a limit is the limit of 𝑇𝛽 with

𝛽 <𝒪 𝜆 3.3.

Now suppose that 𝑇𝛽 fails to be defined or satisfy the conditions of lemma

3.5 with respect to 𝑇𝛽+1 and 𝑇𝛽◇ . Since there are no infinite decreasing sequences

of ordinals we can assume that 𝑇𝛽◇ = 𝑊 0(𝛽
◇)

𝑞 where 𝑞 = 𝛷𝑒(𝑏𝑒𝑡𝑎
◇) is defined and

satisfies the conclusions of lemma 3.5. Thus if 𝑟 = 𝛷𝑒(𝛽) by the choice of 𝑒 as a fixed

point we also have 𝑟 = 𝐽(𝛽, 𝛷𝑒(𝛽 + 1), 𝛷𝑒(𝛽
◇) so 𝑇𝛽 is defined by the application

of lemma 3.5. Note that the work here is really being done by lemma 3.2 which

verified that merely being the image of a monotonic function and the properties of

the function l(𝛽) ensure that all trees in the tower are homeomorphic.

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

11

This completes the proof of theorem 3.1. At this point it is interesting to note

that this is in some sense optimal since every member of a countable hyperarithmetic

class 𝐴 ⊂ 𝜔𝜔 is itself a hyperarithmetic singleton.

Definition 3.5. Say 𝑇 is the 𝛼-reduct of 𝑇 if 𝑇 = 𝑇0 where 𝑇0 is constructed as

described above from 𝑇 ≤T 0(𝛼). Also we call those 𝑔 ∈ [𝑇0] an 𝛼 root of 𝑔 ∈ [𝑇] if

𝑔 is the image of 𝑔 under the constructed homomorphism.

Note that an index for the 𝛼-reduct of 𝑇 as a computable set can be effectively

computed from a index for 𝑇 as a 0(𝛼) computable set.

3.4. Consequences

Harrington observed several other important consequences of the above method in

[1] that have also never been formally published and we take the time to present

those that can be stated in terms of classical computability theory here and leave

those about admissible sets and various implications in second order arithmetic to

another paper.

Definition 3.6. Following Harrington [1] we say a degree 𝑑̃︀ ∈ 𝜔𝜔 is 𝛼 subgeneric

for 𝛼 ∈ 𝒪 if for all 𝛽 <𝒪 𝛼 𝑑̃︀ satisfies both

1. 𝑑̃︀(𝛽) ≡T 𝑑̃︀⊕ 0(𝛽)

2. [∀𝑋]
(︁
𝑋 ≤T 0(𝛼) ∧𝑋 ≤T 𝑑̃︀(𝛽) =⇒ 𝑋 ≤T 0(𝛽)

)︁
A version of Harrington’s first corollary in [1] can now be stated.

Corollary 3.1 (Harrington [1]). For each 𝛼 < 𝜔𝑐𝑘
1 there is a sequence ⟨⟨𝑔𝑛 ∈

𝜔𝜔⟩⟩𝑛∈𝜔 so that for all 𝑛 ∈ 𝜔

1. 𝑔𝑛̃︁ is 𝛼 subgeneric.

2. 𝑔𝑛 �T

⎛⎝⨁︁
𝑖̸=𝑛

𝑔
(𝛼)
𝑖

⎞⎠.

3. 𝑔𝑛 is a the unique solution of a 𝛱0
1 formula the index for which is given uniformly

in 𝑛.

Our first task is to assure ourselves we already know how to satisfy part 1 of

definition 3.6.

Lemma 3.7. If 𝑔 is an 𝛼 root then 𝑔 satisfies part 1 of the definition of 𝛼-

subgeneric.

Proof. Fix ⟨⟨𝑇𝛽⟩⟩𝛽≤𝒪𝛼 witnessing that 𝑔 is an 𝛼 root and 𝜆 ≤𝒪 𝛼 and 𝜓(𝑥) ∈ 𝒞𝛴𝜆

such that 𝑥 ∈ 𝑔(𝜆) ⇐⇒ 𝑔 |= 𝜓. By lemma 3.3 if 𝑔 ∈ [𝑇0] then 𝑔 |= 𝜓 ⇐⇒ 𝑔𝜆
𝜆

𝜓𝜆. Since either 𝜓𝜆 or it’s negation is super forced on 𝑇𝜆 ≤T 0(𝜆) by 𝑔𝜆 ≤T 0(𝜆)⊕ 𝑔
we can compute 𝑔(𝜆) from 0(𝜆) ⊕ 𝑔 completing the proof.

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

12

Building 𝑔 as an 𝛼 root that also satisfies part 2 of the definition of 𝛼-subgeneric

requires slightly more work. Given 𝑋 ≤T 0(𝛽+1) and 𝑋 ≤T 0(𝛽) ⊕ 𝑔 these compu-

tations must be super forced on 𝑇𝛽+1 to be equal but we need to guarantee they

are super forced to agree on 𝑇𝛽 to ensure 𝑋 ≤T 0(𝛽). Since 𝑇𝛽 isn’t the image of

𝑇𝛽+1 under 𝜃𝛽+1 super forcing on 𝑇𝛽+1 doesn’t translate to super forcing on 𝑇𝛽 so

we must guarantee this occurs manually. Since 𝑇𝛽 lacks access to 0(𝛽+1) we can’t

directly diagonalize but must instead try to preserve disagreeing options for the

computation of 𝑋 from 0(𝛽) ⊕ 𝑔 and let the diagonalization occur on 𝑇𝛽+1.

We first must ensure that 𝑇𝛽+1 leaves options open that can be extended on 𝑇𝛽
to incompatible computations.

Definition 3.7. Say 𝑇𝛽 is padded if whenever 𝜎 ∈ 𝑇𝛽 , |𝜎| = 0 mod 2 then 𝜎ˆ

⟨⟨0⟩⟩, 𝜎ˆ⟨⟨1⟩⟩ ∈ 𝑇𝛽 .

And now give conditions that ensure these incompatible computations exist.

Definition 3.8. Say that 𝜃𝛽+1 : 𝑇𝛽+1 ↦→ 𝑇𝛽 is disagreement preserving if whenever

𝜎ˆ⟨⟨0⟩⟩, 𝜎ˆ⟨⟨1⟩⟩ ∈ 𝑇𝛽+1 and |𝜎| = 2𝑖 ≥ l(𝛽) then either[︀
∀ 𝜏, 𝜏 ′ ⊃ 𝜃𝛽+1(𝜎)

]︀
(𝛷𝑖(0

(𝛽); 𝜏) - 𝛷𝑖(0
(𝛽); 𝜏 ′))

Or

𝛷𝑖(0
(𝛽); 𝜃𝛽+1(𝜎ˆ⟨⟨0⟩⟩)) | 𝛷𝑖(0

(𝛽); 𝜃𝛽+1(𝜎ˆ⟨⟨1⟩⟩))

Definition 3.9. Say that ⟨⟨𝑇𝛽⟩⟩𝛽≤𝒪𝛼 is a disagreement preserving downwardly

generic tower if it is a downwardly generic tower and for each 𝛽 with 𝛽 ≤𝒪 𝛼,

𝑇𝛽 is padded and 𝜃𝛽+1 is disagreement preserving. We define the notions of an 𝛼

subgeneric-reduct and 𝛼 subgeneric-root by modifying definition 3.5 to use disagree-

ment preserving downwardly generic towers.

Note that we can produce 𝛼 subgeneric-reducts with the same degree of effec-

tivity as we enjoyed for 𝛼 reducts.

Lemma 3.8. If 𝑔 is a 𝛼 subgeneric-root then 𝑔 is 𝛼 subgeneric.

Proof. By lemma 3.7 it is sufficient to show that 𝑔 satisfies part 2 of definition 3.6.

Suppose, for a contradiction, that 𝑔 fails this condition for the set 𝑋 and let 𝛽 ≤𝒪 𝛼

be the least such that 𝑋 ≤T 0(𝛽) and for some 𝛾 <𝒪 𝛽 we have 𝑋 ≤T 0(𝛾) ⊕ 𝑔 but

𝑋 �T 0(𝛾). Assume 𝛽 is a successor then we must have 𝛾 + 1 = 𝛽 or 𝛽 would not

have been the least failure. Now fix 𝑒, 𝑗 such that

𝑋 = 𝛷𝑒(0
(𝛽))

𝑋 = 𝛷𝑗(0
(𝛾) ⊕ 𝑔𝛾)

(3.3)

Let 𝜓 be the 𝒞𝛴0(𝛾+1)

1 formula asserting that these computations disagree. Since the

computations agree we have 𝑔𝛾+1 |= ¬𝜓 so pick 𝜎 ⊂ 𝑔𝛾+1 such that 𝜎 super forces

¬𝜓 on 𝑇𝛾+1 where

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

13

𝜓 = (∃𝜎 ⊆ 𝑔𝛾+1)(∃𝑥, 𝑠)
(︁
𝛷𝑒(0

(𝛾+1);𝑥)↓𝑠 ̸= 𝛷𝑗(0
(𝛾) ⊕ 𝜃𝛽(𝜎);𝑥)↓𝑠

)︁
We now work to define an initial segment 𝜎′ of 𝑔𝛾+1 extending 𝜎 so that 𝑇𝛾 will

preserve any potential disagreement so it’s observed between the inputs 𝜃𝛾+1(𝜎 ′̂⟨⟨0⟩⟩)
and 𝜃𝛾+1(𝜎 ′̂ ⟨⟨1⟩⟩)] if ever. For this purpose pick 𝑗′ > max(l(𝛾), |𝜎|) so that 𝛷𝑗 w 𝛷𝑗′

and set 𝜎′ = 𝑔𝛽+1�2𝑗′ . Now if 𝛷𝑗′(0
(𝛾); 𝜃𝛾+1(𝜎′ˆ⟨⟨0⟩⟩)) | 𝛷𝑖(0

(𝛾); 𝜃𝛾+1(𝜎′ˆ⟨⟨1⟩⟩)) then

for some choice of 𝑖 ∈ {0, 1} the string 𝜃𝛾+1(𝜎 ′̂ ⟨⟨𝑖⟩⟩) disagrees with 𝑋 so 𝜎 ′̂ ⟨⟨𝑖⟩⟩ |= 𝜓

contradicting the assumption that 𝜎 super forced ¬𝜓 on 𝑇𝛾+1. Thus by definition 3.8

every extension of 𝜃𝛾+1(𝜎′) = 𝜏 yields compatible computations under 𝛷𝑗′ . Thus

given 𝑦 we may compute 𝑋(𝑦) as the value of the first converging computation

𝛷𝑗(0
(𝛾) ⊕ 𝜏 ; 𝑦) for some 𝜏 ∈ 𝑇𝛾 with 𝜏 ⊇ 𝜏 . Since 𝑇𝛾 ≤T 0(𝛾) this search can be

performed computably in 0(𝛾) and as 𝑔𝛾 ⊇ 𝜏 eventually a converging computation

will always be found.

Now suppose 𝛽 is a limit and again let 𝛾 <𝒪 𝛽 and 𝑒, 𝑗 satisfy (3.3). By the

minimality of 𝛽, if 𝑋 ≤T 0(𝜅) with 𝛽 >𝒪 𝜅 ≥𝒪 𝛾 we are done so without loss

of generality we may assume that 𝛾 = 𝛽[𝑛]. To coordinate the behavior of the

computation of 𝑋 from the various 𝑔𝜅 we show that we can choose a single index

for all such computations.

By lemma 3.2 we can uniformly compute 𝑔𝛾 = 𝜗𝜅𝛾(𝑔𝜅) from 𝑔𝜅 using 0(𝜅). We

claim that there is a single index 𝑗′ such that 𝑋 = 𝛷𝑗′(0
(𝜅) ⊕ 𝑔𝜅) whenever 𝛽 ≥𝒪

𝜅 ≥𝒪 𝛾. The computation coded by 𝑗′ can check whether 𝜆 ≤𝒪 𝜅 by inspecting

0(𝜅) allowing 𝛷𝑗′(0
(𝜅)) to recover 𝜅 at which point it can apply 𝜗𝜅𝛾(𝑔𝜅). Note that

our index 𝑗′ has the property that 𝛷𝑗′(0
(𝜅+1);𝜎) = 𝛷𝑗′(0

(𝜅); 𝜃𝜅+1(𝜎)) provided

𝛾 <𝒪 𝜅 <𝒪 𝛽 and 𝜎 ∈ 𝑇𝜅+1. Armed with this index we define 𝜑 asserting that some

such computation for 𝑋 disagrees with the computation from 0(𝛽).

𝜑 = (∃𝜎 ⊆ 𝑔𝛽)(∃𝑥, 𝑠, 𝜅)
(︁
𝛽 >𝒪 𝜅 ≥𝒪 𝛾 ∧ 𝛷𝑒(0

(𝛽);𝑥)↓𝑠 ̸= 𝛷𝑗′(0
(𝜅) ⊕ 𝜗𝛽𝜅(𝜎);𝑥)↓𝑠

)︁
Since 𝜑 is false let 𝜎 ⊂ 𝑔𝛽 on 𝑇𝛽 force ¬𝜑. Now fix 𝑗̂ > max(l(𝛽)+𝑛, |𝜎|) so that

𝛷𝑗 w 𝛷𝑗′ w 𝛷𝑗̂ and let 𝑚 = 2𝑗̂− l(𝛽). Now if 𝜅 = 𝛽[𝑚] by (3.2) l(𝜅) = 𝑚+ l(𝛽) = 2𝑗̂

and by (3.1) l(𝜅′) > l(𝜅) for 𝜅 <𝒪 𝜅′ <𝒪 𝛽. Now if 𝜎′ = 𝑔𝛽�2𝑗̂ then we also have 𝜎′ =

𝑔𝜅�2𝑗̂ = 𝑔𝜅+1�2𝑗̂ and 𝜎′ˆ⟨⟨𝑖⟩⟩ ∈ 𝑇𝜅+1�l(𝜅+1) = 𝑇𝛽�l(𝜅+1). Turning our attention back

to definition 3.8 suppose that 𝛷𝑗′(0
(𝜅); 𝜃𝜅+1(𝜎′ˆ⟨⟨0⟩⟩)) and 𝛷𝑗′(0

(𝜅); 𝜃𝜅+1(𝜎′ˆ⟨⟨1⟩⟩))
are incompatible then we can choose 𝜏 = 𝜎′ˆ⟨⟨𝑖⟩⟩ such that 𝛷𝑗′(0

(𝜅) ⊕ 𝜗𝛽𝜅(𝜏);) is

incompatible with 𝑋. This holds as 𝜗𝛽𝜅(𝜏) can be factored to 𝜃𝜅+1(𝜗𝛽𝜅+1(𝜏)) and as

|𝜏 | ≤ l(𝜅+1) simplifies to just 𝜃𝜅+1(𝜏). As such a 𝜏 would force 𝜑 we conclude that

every 𝜏 ∈ 𝑇𝜅 extending 𝜃𝜅+1(𝜎′) yields compatible computations and we compute

𝑋 from 0(𝜅) as we did in the successor stages. Hence 𝑋 ≤T 0(𝜅) contradicting the

minimality of 𝛽.

We now show that a slight modification of the construction of 𝑇𝛽 from 𝑇𝛽+1 and

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

14

𝑇𝛽◇ we performed above lets us build a subgeneric 𝛼 root.

Lemma 3.9. The following conditions may be added to those of lemma 3.5 so that

𝑇𝛽 continues to be effectively built from 𝑇𝛽+1 and 𝑇𝛽◇ while jointly satisfying all

conditions.

4. If 𝛾 = 𝛽◇ and 𝑇𝛾 is padded or l(𝛽) = 0 then 𝑇𝛽 is padded.

5. 𝜃𝛽+1 is disagreement preserving

Proof. To ensure that part 5 holds whenever |𝜎| = 2𝑖 ≥ l(𝛽), 𝜏0 = 𝜃𝛽+1
𝑠 (𝜎ˆ⟨⟨0⟩⟩)

and 𝜏1 = 𝜃𝛽+1
𝑠 (𝜎 ⟨⟨1⟩⟩) are both defined and 𝛷𝑖,𝑠(𝜏0) - 𝛷𝑖,𝑠(𝜏1), but there are 𝜏 ′0, 𝜏

′
1 ⊃

𝜃𝛽+1
𝑠 (𝜎) with 𝛷𝑖,𝑠(𝜏

′
0) | 𝛷𝑖,𝑠(𝜏

′
1) then set 𝜃𝛽+1

𝑠+1 (𝜎ˆ⟨⟨0⟩⟩) = 𝜏 ′0 and 𝜃𝛽+1
𝑠+1 (𝜎ˆ⟨⟨1⟩⟩) = 𝜏 ′1

and unset 𝜃𝛽+1
𝑠+1 (𝜏) for every 𝜏) 𝜎. To ensure that 𝑇𝛽 is padded we simply place

𝜎ˆ⟨⟨0⟩⟩ and 𝜎ˆ⟨⟨1⟩⟩ into 𝑇𝛽 whenever 𝜎 ∈ 𝑇𝛽 and for some 𝑙 |𝜎| = 2𝑙 ≥ l(𝛽). If

l(𝛽) = 0 and this suffices. Otherwise 𝑇𝛽 is padded as 𝑇𝛾�l(𝛽) = 𝑇𝛽�l(𝛽) and 𝑇𝛾 is

padded.

Note that given an initial tree 𝑇 we can easily perform effective modifications

to ensure it is padded so substituting lemma 3.9 into the construction given by

lemma 3.6 yields a disagreement preserving downwardly generic tower of length

𝛼. Thus given a 0(𝛼) index for 𝑔𝛼 viewed as a tree 𝑇𝛼 with [𝑇𝛼] = {𝑔𝛼} we can

compute the index for a computable tree 𝑇0 with a unique path 𝑔 which by lemma

3.8 is 𝛼 subgeneric. While this easily gives a (uniformly witnessed) sequence of 𝛱0
1

singletons 𝑔𝑖 of 𝛼 subgenerics this is not quite sufficient to prove corollary 3.1 as we

must still ensure that part 2 of definition 3.1 holds. To do this we observe

Lemma 3.10. There is a uniform sequence 𝑇 𝑖
𝛼 ≤T 0(𝛼) each having a unique path

𝑔𝑖 such that

𝑔𝑘 �T

⎛⎝⨁︁
𝑖 ̸=𝑘

𝑔𝑖 ⊕ 0(𝛼)

⎞⎠
Proof. Our construction builds 𝑔𝑘 as the limit of ˆ𝑔𝑘,𝑠 via a finite injury argument.

The requirements ℛ𝑘,𝑖 demand that 𝑔𝑘 ̸= 𝛷𝑖(
⨁︀

𝑖 ̸=𝑘 𝑔𝑖⊕0(𝛼)) and are met by chang-

ing the value of 𝑔𝑘,𝑠+1(𝑥) to disagree with the computation in question whenever

such a change is not restrained by a higher priority requirement and restraining

any changes in the use of this computation or of 𝑔𝑘(𝑥). Every time 𝑔𝑘,𝑠+1(𝑥) is set

to a new value it is picked large enough not yet to have been enumerated into the

compliment of 𝑇 𝑖
𝛼.

This now suffices to complete the proof of corollary 3.1. Using the uniformity of

the trees 𝑇 𝑖
𝛼 from lemma 3.10 and the uniformity of the construction in lemma 3.6

(using the modified lemma 3.9) we get a uniform sequence of computable trees 𝑇 𝑖
0

each containing a single 𝛼 subgeneric path 𝑔𝑖. To see that part 2 of definition 3.1

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

15

holds observe that the uniformity of the trees 𝑇 𝑖
𝛼 and the uniform definition of the

maps 𝜗𝑖,𝛼+1
0 guarantees the equivalence 𝑔𝑖⊕0(𝛼) ≡T 𝑔𝑖⊕0(𝛼) holds uniformly. Also

by the uniformity of lemma 3.7 𝑔𝑖 ⊕ 0(𝛼) ≡T 𝑔
(𝛼)
𝑖 holds uniformly so if part 2 failed

we would have the contradiction⨁︁
𝑖 ̸=𝑘

𝑔𝑖 ⊕ 0(𝛼) ≥T

⨁︁
𝑖̸=𝑘

𝑔
(𝛼)
𝑖 ≥T 𝑔𝑘 ⊕ 0(𝛼) ≥T 𝑔𝑘

It is worth remarking that the result claimed by Harrington in [1] isn’t actually

lemma 3.1 but the substantially stronger version below.

Corollary 3.2 (Harrington [1]). For each 𝛼 < 𝜔𝑐𝑘
1 there is a sequence ⟨⟨𝑔𝑛 ∈

𝜔𝜔⟩⟩𝑛∈𝜔 so that for all 𝑛 ∈ 𝜔

((1)) 𝑔𝑛̃︁ is 𝛼 subgeneric.

((2)) 𝑔𝑛 �T

⎛⎝⨁︁
𝑖 ̸=𝑛

𝑔𝑖

⎞⎠(𝛼)

.

((3)) 𝑔𝑛 is a the unique solution of a 𝛱0
1 formula the index for which is given

uniformly in 𝑛.

Corollary 3.2 replaces claim 2 of corollary 3.1 which required that no 𝑔𝑛 could

be computable in the join of the 𝛼 jumps of the remaining 𝑔𝑖 with the substantially

stronger requirement that 𝑔𝑛 not be computable in the 𝛼 jump of the join of the

remaining 𝑔𝑖. Corollary 3.2 is true but we have only been able to prove the result

by making some substantial modifications to the underlying framework which we

sketch below.

To establish claim (2) of corollary 3.2 we introduce a notion of mutual genericity

for a sequence of the reals 𝑔𝑖 on the sequence of trees 𝑇 𝑖 where 𝑔𝑖 is a path through

𝑇𝑖. In particular we define 𝑔 =
⨁︀
𝑔𝑖 to be the function where 𝑔(⟨𝑖, 𝑥⟩) = 𝑔𝑖(𝑥) and

write 𝑔[𝑛](𝑥) for 𝑔(⟨𝑛, 𝑥⟩). We further define 𝑇 =
⨁︀
𝑇 𝑖 to be the tree consisting of

those nodes 𝜎 with 𝜎[𝑛] ∈ 𝑇𝑛 for every 𝑛 and say that the sequence of singletons 𝑔𝑖

is mutually 𝛼 generic on 𝑇 𝑖 if 𝑔 is 𝛼 generic on 𝑇 . We prove 3.2 by simultaneously

building 𝜔 many disagreement preserving downwardly generic towers consisting of

the trees 𝑇 𝑖
𝛽 for 𝛽 ≤𝒪 𝛼 where 𝑔𝑖𝛽 is the unique path through 𝑔𝑖𝛽 and the trees 𝑇 𝑖

𝛽

satisfy the obvious generalization of being eagerly generic to the notion of mutually

eagerly generic. We stipulate our coding function has the property that ⟨𝑛, 𝑥 + 1⟩
is always greater than ⟨𝑛, 𝑥⟩ so if 𝜎 ∈ 𝑇 we may assume that 𝜎 =

⨁︀
𝜎𝑖 with each

𝜎𝑖 ∈ 𝜔<𝜔 and all but finitely many of them equal to the empty string

Generalizing our previous construction we now build 𝑇 𝑖
𝛽 as the image of

𝜃𝑖,𝛽+1 ≤T 0(𝛽+1) mapping 𝑇𝛽+1 to 𝑇 𝑖
𝛽 . Naively one might imagine that we could

straightforwardly carry out the same forcing construction we used previously but

now applied to 𝑇𝛽 as in the standard (not localized to a tree) product forcing con-

struction. However, since we wish to maintain 𝑇𝛽 =
⨁︀
𝑇 𝑖
𝛽 so as to still produce a

sequence 𝑔𝑖 of 𝛼-subgeneric roots such a simple argument won’t suffice. In particular

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

16

by demanding that every path through 𝑇𝛽 extending 𝜎 also pass through 𝜏 ⊇ 𝜎 we

would impose pruning on the factors 𝑇 𝑖
𝛽 which would in turn force a pruning of 𝑇𝛽

above other nodes 𝜎′ even when 𝜎′ is incompatible with 𝜎 because we could still

have 𝜎[𝑖] = 𝜎′[𝑖]. To avoid this difficulty we ensure that the paths in 𝑇 𝑖
𝛽 carry with

them the information about the paths in 𝑇 𝑗
𝛽 , 𝑗 ̸= 𝑖. In particular we will ensure that

if 𝜎 | 𝜎′ then 𝜃𝑖,𝛽+1(𝜎) | 𝜃𝑖,𝛽+1(𝜎′) for every 𝑖.

As before we define 𝜃𝑖,𝛽+1 as the limit of a stagewise construction so we suppose

that 𝜃𝑖,𝛽+1
𝑠 (𝜎−) is defined and |𝜎| ≤ 𝑠 and define 𝜃𝑖,𝛽+1

𝑠+1 (𝜎) for each 𝑖 exactly as

we did in lemma 3.5. Note that if ⟨𝑛, 𝑥⟩ = |𝜎| this has the effect of duplicating the

usual action of 𝜃𝛽+1
𝑠+1 as it would apply to 𝜎[𝑛] in the single tree 𝑇𝑛

𝛽+1 at 𝜃𝑖,𝛽+1
𝑠+1 (𝜎−)

on 𝑇 𝑖 for all 𝑖 ∈ 𝜔. It is readily apparent that this definition ensures the required

incompatibility property mentioned above. We may now safely prune branches on

𝑇𝛽 without fear of inadvertent interference.

We now simply demand that if at some stage 𝑠 > 2𝑖 we discover some 𝜎′ ⊇ 𝜎,

|𝜎| = 2𝑖 with some finite (contiguous) initial segment of
⨁︀
𝜃𝑖,𝛽+1
𝑠 (𝜎′) meeting

𝑊 0(𝛽)

𝑖 then we redefine 𝜃𝑖,𝛽+1
𝑠+1 (𝜎) to be equal to 𝜃𝑖,𝛽+1

𝑠 (𝜎′) and unset 𝜃𝑖,𝛽+1
𝑠 (𝜎′)

for every 𝜎′) 𝜎. By our incompatibility property this can’t have any effect on

any node in 𝑇𝛽 incompatible with
⨁︀
𝜃𝑖,𝛽+1
𝑠 (𝜎′). At this point we may now appeal

to the fact that 𝑔𝑖𝛽+1 is the unique path through 𝑇𝛽+1 and argue that 𝜃𝑖,𝛽+1(𝜎)

extends to an infinite path on 𝑇 𝑖
𝛽 if and only if 𝜎[𝑛] extends to an infinite path on

𝑇𝑛
𝛽+1 for all 𝑛. A similar approach can be applied to demand a slightly modified

version of disagreement preservation. While this construction doesn’t yield a 0(𝛽+1)

computable homeomorphism from [𝑇𝑛
𝛽+1] to [𝑇𝑛

𝛽] (since some nodes would need to

be mapped to many potential values) it does yield a 0(𝛽+1) homeomorphism from

[𝑇𝛽] to [𝑇𝛽+1] and this is sufficient to give both the desired mutual genericity as well

as preserve the desired properties of the non-mutual construction. This completes

our sketch of corollary 3.2.

Before we finish our discussion of Harrington’s work in [1] one final corollary is

worth mentioning.

Corollary 3.3 (Harrington [1]). There is a non-empty 𝛱0
1 class whose members

are 𝛼 subgeneric for every 𝛼 < 𝜔𝑐𝑘
1 .

Proof. In the appendix we establish the existence of a 𝛱1
1 linearly ordered set

of notations 𝐼 cofinal in a path through 𝒪 such that the functions 𝛽◇, l(𝛽) are

uniformly computable in 𝛼 on the set {𝛽|𝛽 ≤𝒪 𝛼} for 𝛼 ∈ 𝐼. Now consider the

predicate 𝛬𝛼 consisting of those sets 𝑇 coding computable trees that with 𝑇 = 𝑇0
in some disagreement preserving downwardly generic tower of length 𝛼 with 𝑇 not

having well-founded height less than the notation denoted by 𝛼. It is easily checked

that 𝛬𝛼 is 𝛥1
1 uniformly in 𝛼 as it is easily defined via number quantification over

0(𝛼+1) since the set of notations whose height is less than that of 𝛼 is uniformly

computable from 0(𝛼+1). Thus we may safely identify 𝛼 ∈ 𝐼 with the 𝛥1
1 index

for 𝛬𝛼. Moreover 𝛼̂ >𝒪 𝛼 entails 𝛬𝛼̂ ⊆ 𝛬𝛼 and clearly 𝛬𝛼 ̸= ∅. Now fix some

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

17

𝛥1
1 subset 𝐻 of 𝐼 and consider

⋂︀
𝛼∈𝐻 𝛬𝛼. By 𝛴1

1 bounding there is some 𝛼 ∈ 𝐼

bounding 𝐻 so this intersection contains the non-empty collection 𝛬𝛼. Thus by

Kreisel’s compactness theorem [4] there is some 𝑇 in
⋂︀

𝛼∈𝒪 𝛬𝛼 and by lemma 3.8

every path through 𝑇 is 𝛼 subgeneric for every 𝛼 < 𝜔𝑐𝑘
1 . Moreover, 𝑇 doesn’t have

well-founded height below 𝜔𝑐𝑘
1 so as 𝑇 is computable there must be some infinite

path through 𝑇 . Indeed, since no path through 𝑇 is hyperarithmetic [𝑇] must be a

perfect set.

4. Moduli of Computation

4.1. Background

Interest in the computational properties of fast growing functions goes back to

Post’s program and the realization that how fast the enumeration of 𝑀 grows is a

measure of the thinness of 𝑀 , and as Rice first showed [8] when he characterized

the hyperimmune sets this way, it’s often an easier concept to work with. With

seeming ingratitude this approach soon turned on Post giving Yates [9] the tools

he needed to put the nails in the coffin of Post’s Program by building a complete

maximal set. Later Martin improved this analysis to fully characterize the degrees of

maximal sets [10] and even today studying the relation between rate of growth and

computational power continues to pay off [11, 12, 13, 14, 15, 16]. Strangely, however,

while many different notions of ‘fast growing’ have been proposed and the degrees

of such functions (partially) characterized little work has been done in the other

direction. That is given a degree how fast much a function grow to compute that

degree? To this end we follow Slaman and Groszek in introducing the following

definitions [17].

Definition 4.1. The function ℎ ∈ 𝜔𝜔 is a moduli (of computation) for a degree

𝑑̃︀ if every 𝑓 ≫ ℎ computes 𝑑̃︀. ℎ is a uniform moduli of computation if there is

some fixed computable functional 𝛷 and 𝐷 ∈ 𝑑̃︀ such that 𝑓 ≫ ℎ =⇒ 𝛷(𝑓) = 𝐷.

If furthermore ℎ is a (uniform) moduli of computation for ℎ̃︀ we say that ℎ is a

(uniform) self-moduli.

It’s natural to respond to this definition by first asking when can a degree 𝑑̃︀ even

have a moduli of computation? What about a uniform moduli of computation? Can

any degree be computed (uniformly?) by sufficiently fast growing functions? Though

this side of the relationship between rates of growth and computational power hasn’t

received as much attention as it’s opposite these questions are natural enough they

have multiple published solutions that are disguised by terminological differences.

We first look to the uniform case where one can show the degrees with a uniform

self-moduli are just the 𝛱0
1 singletons (in 𝜔𝜔) we direct the reader to Jockusch and

McLaughlin [18] for the earliest easily straightforward English language proof but

follow them in crediting Kuznecov and Trahtenbrot [19] and latter Myhill [20]. We

generalize this result to those functions ℎ with a uniform moduli in some computable

ordinal number of jumps. Informally the relationship is simply that ℎ is a 𝛱0
𝛽+1

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

18

singleton if and only if the natural fast growing function computable in ℎ(𝛽) is a

uniform modulus for ℎ. To state the theorem formally we need to replace “natural

fast growing function” with an explicit function.

Definition 4.2.

𝜉0(𝑥) = 0

𝜉𝛽+1(𝑥) =

{︃
𝜉𝛽(𝑥) if 𝑥 < p𝛽 + 1q

min
{︀
𝑡
⃒⃒
[∀ 𝑖 < 𝑥]

(︀
𝛷𝑖(0

(𝛽); 𝑖)↓ ⇐⇒ 𝛷𝑖(0
(𝛽); 𝑖)↓𝑡

)︀}︀
otherwise

𝜉𝛽+1(𝑥) = max(𝜉𝛽+1(𝑥), sup
𝛾≤𝒪𝛽

𝜉𝛾(𝑥))

For 𝜆 ≤𝒪 𝛼 a limit

𝜉𝜆(𝑥) = sup
𝛽<𝒪𝜆

𝜉𝛽(𝑥) = sup
𝛽<𝒪𝜆

p𝛽q≤𝑥

𝜉𝛽(𝑥)

We relativize this notion by setting 𝜉0,ℎ = ℎ and building 𝜉𝛼,ℎ as above.

Note that as the notations below some given notation 𝛽 can be effectively com-

puted from 0′ these supremums can be easily deciphered by any set computing 0′.

With this in mind the following properties should be straightforward to verify so

are presented without proof.

Lemma 4.1. For each 𝛽 ≤𝒪 𝛼, ℎ ∈ 𝜔𝜔 𝜉𝛽,ℎ is uniformly computable from ℎ(𝛽)

and has the following properties.

1. 𝜉𝛽 is a uniform self-modulus for 0(𝛽) and the functional witnessing this unifor-

mity is itself uniform in 𝛽.

2. [∀ 𝛾 <𝒪 𝛽]
(︀
𝜉𝛾,ℎ ≪ 𝜉𝛽,ℎ

)︀
.

3. There is a stagewise approximation 𝜉𝛽+1,ℎ
𝑠 uniformly computable in ℎ(𝛽) and

strictly increasing in 𝑠 such that lim𝑠→∞ 𝜉𝛽+1,ℎ
𝑠 (𝑥) = 𝜉𝛽+1,ℎ(𝑥).

4. The predicate 𝜉𝛽,ℎ(𝑥) ≥ 𝑦 is 𝒞𝛴(ℎ)𝛽.

Note that all of the above relativizes to 𝜉𝛽ℎ . We can now formally describe the

general relation between 𝛱0
𝛽+1 singletons and uniform moduli.

Theorem 4.1. 𝜉𝛽,ℎ is a uniform modulus for ℎ if and only if ℎ is a 𝛱0
𝛽+1 singleton.

Proof. Suppose 𝜉𝛽,ℎ is a uniform modulus for ℎ witnessed by the reduction 𝛷. By

part 4 of lemma 4.1 we note that there is a 𝒞𝛴(ℎ)𝛽 formula 𝜓(𝜎) asserting that

there is some 𝑥 < |𝜎| and 𝜉𝛽,ℎ(𝑥) > 𝜎(𝑥). Thus the formula 𝜑(𝑔) defined below is

equivalent to a 𝒞𝛱𝛽+1 formula

𝜑(𝑔)
def
=

[︀
∀𝜎 ∈ 𝜔<𝜔

]︀
[∀ 𝑠][∀𝑥](𝛷,𝑠(𝜎;𝑥)↑∨𝛷,𝑠(𝜎;𝑥) = 𝑔(𝑥) ∨ 𝜓(𝜎))

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

19

Clearly 𝜑(ℎ) holds as if 𝜎 ≫ 𝜉𝛽,ℎ and 𝛷(𝜎;𝑥)↓ it must have value 𝑔(𝑥). But if

ℎ̂ ̸= ℎ then pick 𝑥 with ℎ̂(𝑥) ̸= ℎ(𝑥) and 𝜎 = 𝜉𝛽,ℎ�𝑙 where 𝑙 > u
[︀
𝛷(𝜉𝛽,ℎ;𝑥)

]︀
. Such

𝜎 witnesses ¬𝜑(ℎ̂) so ℎ is a 𝛱0
𝛽+1 singleton.

Conversely suppose that 𝜑 ∈ 𝒞𝛱𝛽+1 has unique solution ℎ. We may put 𝜑 in the

form [∀𝜎 ⊂ ℎ]𝜓(𝜎) where 𝜓 is a 𝒞𝛴𝛽 formula not mentioning ℎ. Now given 𝑔 ≫ 𝜉𝛽,ℎ

we can uniformly recover 0(𝛽) from 𝑔 and thus compute a tree 𝑇 consisting of all

those 𝜎 ≪ 𝑔 for which 𝜓(𝜎) holds. As ℎ ≪ 𝜉𝛽,ℎ ≪ 𝑔 ℎ is a path through 𝑇 and as

any path through 𝑇 would satisfy 𝜑 it is unique. As 𝑇 is finitely branching we can

avail ourselves of Köenig’s lemma to establish that 𝑔 uniformly computes ℎ.

Note that the specific form of 𝜉𝛽+1,ℎ isn’t important only that 𝜉𝛽+1,ℎ >> ℎ and

that 𝜉𝛽+1,ℎ is a uniform modulus for 0(𝛽+1).

This suffices to give a uniform modulus for every hyperarithmetic function and

it is easy to see (as in [17]) that ℎ ∈ 𝜔𝜔 has a uniform modulus if and only if ℎ is 𝛥1
1.

While Solovay finally classified those functions with some modulus of computation

in [21] using a different method we follow the approach taken in [17] using Hechler

style forcing conditions to demonstrate the following lemma.

Lemma 4.2 (Slaman and Groszek). If 𝑔 has a modulus of computation than 𝑔

has a uniform modulus of computation

We quickly sketch the proof. The conditions will be Cohen style conditions in

𝜔<𝜔 paired with some 𝑞 ∈ 𝜔𝜔 we commit to majorizing. If ℎ is a modulus for 𝑔 then

the forcing conditions do their best to produce some 𝑓 ≫ ℎ not computing 𝑔 and

their failure can only occur if there is some sufficiently fast growing ℎ̂ ≫ ℎ above

which the reduction is uniform. Combining this result with the remark above yields

Solovay’s result.

Theorem 4.2 (Solovay). ℎ ∈ 𝜔𝜔 has a modulus of computation if and only if ℎ

is 𝛥1
1.

4.2. Non-uniform Moduli

The above results pose a very puzzling question: All the natural examples of moduli

are uniform moduli and every function with a modulus must have a uniform modulus

so can the two notions come apart and if so by how much? The remainder of this

paper is devoted to showing that these two notions come apart as far as possible.

In particular we prove the following result.

Theorem 4.3. For each 𝛼 ∈ 𝒪 there is a a self-modulus 𝜁 ≤T 0(𝛼) such that no

𝑓 ≤tt 𝜁
(𝛽) for any 𝛽 <𝒪 𝛼 is a uniform modulus for 𝜁.

We can now prove 4.3. We proceed by fixing some notation 𝛼 and describe in

this section how to build a self-modulus 𝜁 with no uniform moduli computable from

any 0(𝛽), 𝛽 <𝒪 𝛼. This requires walking a careful line between making 𝜁 unique

enough that every faster growing function computes it but not so unique that they

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

20

can do so uniformly. Our approach is to build 𝜁 as a highly ‘generic’ function that

is nevertheless unique for all ‘small’ functions majorizing it. Any ‘large’ function

majorizing 𝜁 will have enough computational power to watch our construction of

𝜁 while the uniqueness of 𝜁 relative to the ‘small’ functions majorizing 𝜁 will let

them compute 𝜁. Essentially large will mean dominating 𝜉𝛼 and 𝜁 will be built

computably in 0(𝛼) leaving the rest of the construction to deal with small functions

and to be sufficiently generic to avoid small uniform moduli. The level of genericity

required is given by the next lemma.

Lemma 4.3. If 𝑔 is 𝛼 generic on 𝑇 ≤T 0 and non-isolated then no ℎ ≤tt 𝑔
(𝛽), 𝛽 <𝒪

𝛼 is a uniform modulus for 𝑔.

Proof. For contradiction fix 𝑔, ℎ as in the lemma, 𝛹 a truth-table functional and 𝛷

a Turing functional such that ℎ = 𝛹(𝑔(𝛽)) and for every 𝑓 ≫ ℎ 𝛷(𝑓) = 𝑔. Now let 𝜑

be the 𝒞𝛴𝛽+1 formula defined below asserting that for some 𝜎 ≫ ℎ 𝛷(𝜎) disagrees

with 𝑔.

𝜑
def
=

(︁
∃ 𝜏 ≫ 𝛹(𝑔(𝛽))

)︁
(∃𝑥)

(︁
𝛷(𝜏 ;𝑥)↓|𝜏 | ̸= 𝑔(𝑥)

)︁
If 𝜑(𝑔) then there would be some 𝑓 ≫ 𝛹(𝑔(𝛽)) = ℎ extending 𝜏 so 𝛷(𝑓) ̸= 𝑔. Thus

𝜑(𝑔) and as 𝛽+1 ≤𝒪 𝛼 we must have some 𝜎 ⊂ 𝑔 with 𝜎
𝑇 𝜑. As 𝑔 is non-isolated

we can fix another path 𝑔 ̸= 𝑔 on 𝑇 extending 𝜎. Let ℎ̂ = 𝛹(𝑔(𝛽)) which as 𝛹 is

a truth table reduction must be total. Since 𝑔 ⊃ 𝜎 we know 𝜑((̂𝑔)) holds. Now fix

some 𝑓 ≫ ℎ, ℎ̂. By assumption 𝛷(𝑓) = 𝑔 ̸= 𝑔 contradicting the fact that 𝛷(𝑓) agrees

with 𝑔 everywhere both are defined.

Thus, we can make 𝜁 sufficiently generic for our purposes by building it as a non-

isolated path through some 𝛼 reduct 𝑇0. If we had simply made 𝜁 fully 𝛼 generic

then it wouldn’t be a self-modulus at all since if 𝑔 is a non-isolated path through

𝑇 and 2-generic on 𝑇 relative to 𝑇 then 𝑔 is not a self-modulus. Ideally we would

simply manipulate 𝑇0 so that if some ℎ ≫ 𝑓, 𝑔 ∈ [𝑇0] then ℎ ≫ 𝜉𝛼 ensuring that

if ℎ ≫ 𝜁 either {𝜎 ∈ 𝑇0|𝜎 ≪ ℎ} has unique path 𝜁 or ℎ ≥T 0(𝛼) ≥T 𝜁. However,

𝑇0 must be computable so this condition is too strong. Instead we will impose a

scrambled version of this condition.

Definition 4.3. A tree 𝑇 is uniquely 𝛽 small if

[∀ 𝑓, 𝑔 ∈ [𝑇]][∀𝑥]
(︀
𝑓(𝑥), 𝑔(𝑥) ≤ 𝜉𝛽(𝑥) =⇒ 𝑓�𝑥+1 = 𝑔�𝑥+1

)︀
Ultimately we must project the impact of making 𝑇𝛽+1 uniquely 𝛽 small down

to 𝑇0 without while retaining the ability to extract 0(𝛽+1) from 0(𝛽) and ℎ where

ℎ≫ 𝑓, 𝑔 for some 𝑓, 𝑔 ∈ [𝑇0]. This requires we further restrict our choice of reduction

functions 𝜃𝛽+1.

Definition 4.4. Say a monotonic map 𝜃 : 𝑇 * ↦→ 𝑇 is largeness preserving if every

𝜎′ ∈ rng 𝜃 is non-decreasing and if 𝜃(𝜎ˆ⟨⟨𝑖⟩⟩) = 𝜎′ˆ𝜏 ′ then every 𝑥 ∈ dom 𝜏 ′ satisfies

𝜏 ′(𝑥) ≥ 𝑖.

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

21

Definition 4.5. Say a downwardly generic tower ⟨⟨𝑇𝛽⟩⟩𝛽≤𝒪𝛼 is a uniquely small

tower (of length 𝛼) if every 𝑇𝛽 is uniquely 𝛽 small and every 𝜃𝛽+1 in part 3 of

definition 3 is largeness preserving. Say 𝑇0 is an 𝛼 uniquely small reduct if it occurs

in some uniquely small tower of length 𝛼.

We now fix a uniquely small tower ⟨⟨𝑇𝛽⟩⟩𝛽≤𝒪𝛼 of length 𝛼 for the remainder of

the proof.

Lemma 4.4. For every 𝛽 ≤𝒪 𝛼 the monotonic function 𝜗𝛽0 is largeness preserving.

Proof. Suppose that 𝛽 is the least failure. If 𝛽 = 𝛾 + 1 then 𝜗𝛽0 = 𝜗𝛾0 ∘ 𝜃𝛾+1. It is

straightforward to verify that the composition of two largeness preserving functions

is largeness preserving yielding the contradiction. Now suppose 𝛽 is a limit. Since

𝜃1 is largeness preserving we know that 𝜗𝛽0 is non-decreasing. But 𝜗𝛽0 (𝜎ˆ⟨⟨𝑖⟩⟩) =

𝜗𝛾0(𝜎ˆ⟨⟨𝑖⟩⟩) for some 𝛾 ≤𝒪 𝛽 by part 3 of lemma 3.2 so by the minimality of 𝛽

𝜗𝛽0 (𝜎ˆ⟨⟨𝑖⟩⟩) can’t fail the other half of definition 4.4.

While the motivation for making 𝜃𝛽+1 largeness preserving is to protect the

encoding of 0(𝛼) in every pair of 𝑓, 𝑔 ∈ [𝑇0] it also provides the following useful

property.

Lemma 4.5. A bound 𝑙(𝑛) on |𝜗𝛽(𝜎)| for those 𝜎 with |𝜎| < 𝑛 and 𝜗𝛽(𝜎) ≪ ℎ can

be uniformly computed from 0(𝛽) ⊕ ℎ.

Proof. Let 𝑆0 be the set containing the empty string and let 𝑙(0) = |𝜗𝛽(⟨⟨⟩⟩)|.

𝑆𝑛+1 = {𝜎ˆ⟨⟨𝑖⟩⟩|𝜎 ∈ 𝑆𝑛 ∧ (∃𝑥 ≤ 𝑙(𝑛) + 1)(ℎ(𝑥) ≥ 𝑖) ∧ 𝜎ˆ⟨⟨𝑖⟩⟩ ∈ 𝑇𝛽+1}
𝑙(𝑛+ 1) = max

𝜎∈𝑆𝑛+1

|𝜗𝛽(𝜎)|

Note that by definition 4.4 in defining 𝑆𝑛+1we’ve only excluded values of 𝑖 that

guarantee ℎ ̸≫ 𝜗𝛽(𝜎ˆ⟨⟨𝑖⟩⟩).

Lemma 4.6. Suppose 𝜁 ≤T 0(𝛼+1) is a path through an 𝛼 uniquely small reduct 𝑇0
then 𝜁 is a self-modulus.

Proof. Let ℎ ≫ 𝜁 which without loss of generality we may assume is non-

decreasing. First suppose that 𝜁 is the only path through 𝑇0 satisfying ℎ ≫ 𝜁.

In this case let 𝑇 be the set of 𝜎 ∈ 𝑇0 with ℎ≫ 𝜎. Clearly 𝑇 is a tree and 𝜁 is the

unique path through 𝑇 . As 𝑇 is a finitely branching tree computable in ℎ, Köenig’s

lemma lets us uniformly compute 𝜁 from ℎ. So suppose 𝜁, 𝑔 ∈ 𝑇0 with ℎ≫ 𝜁, 𝑔 and

𝜁(𝑦) ̸= 𝑔(𝑦). We argue by effective transfinite recursion that ℎ ≥T 0(𝛽) (uniformly

in 𝛽) for 𝛽 ≤𝒪 𝛼 + 1 leaving the routine details for the reader. At limit stages the

induction is straightforward so suppose ℎ ≥T 0(𝛽).

We show that given 𝑥 > 𝑦 ℎ can (uniformly) compute 𝑓(𝑥) ≥ 𝜉𝛽+1(𝑥) and

thus ℎ ≥T 𝑓 ≥T 0(𝛽+1). By way of lemmas 4.4 and 4.5 we compute 𝑙 such that if

|𝜎| ≤ 𝑥+ 1 and ℎ≫ 𝜗𝛽0 (𝜎) then |𝜗𝛽0 (𝜎)| < 𝑙. We now verify 𝑓(𝑥) ≥ 𝜉𝛽+1(𝑥).

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

22

Since 𝑔𝛽 , 𝜁𝛽 ∈ [𝑇𝛽] and by monotonicity 𝑔𝛽�𝑥+1 ̸= 𝜁𝛽�𝑥+1 either 𝑔𝛽(𝑥) ≥ 𝜉𝛽+1(𝑥)

or 𝜁𝛽(𝑥) ≥ 𝜉𝛽+1(𝑥). But |𝜗𝛽(𝑔𝛽�𝑥+1)| < 𝑙 and |𝜗𝛽(𝜁𝛽�𝑥+1)| < 𝑙 so as 𝜗𝛽 is largeness

preserving and ℎ≫ 𝑔, 𝜁 is monotonic we can define 𝑓(𝑥) = ℎ(𝑙). This completes the

proof that 𝜁 is a self-modulus.

We fill in the final piece of the puzzle by embellishing our construction from

lemma 3.5 so that the resulting downwardly generic tower is a uniquely small tower.

Lemma 4.7. The statement of lemma 3.5 still holds if we also demand that 𝜃𝛽+1

is largeness preserving and 𝑇𝛽 is uniquely 𝛽 small.

Proof. We sketch the modifications the proof of lemma 3.5 requires. Since it is

trivial to ensure 𝜃𝛽+1 is largeness preserving simply by restricting which nodes we

consider as values for 𝜃𝛽+1
𝑠 we restrict our attention to ensuring that 𝑇𝛽 is uniquely

𝛽 small.

It is easy to eventually recognize pairs of nodes 𝜎, 𝜏 with |𝜎| = |𝜏 | = 𝑥 + 1 in

rng 𝜃𝛽+1
𝑠 such that 𝜎(𝑥), 𝜏(𝑥) < 𝜉𝛽+1

𝑠 (𝑥) and to abandon (remove from rng 𝜃𝛽+1
𝑠+1)

one or the other rendering it a terminal branch. Provided we always cut off one

member of any such pair 𝑇𝛽 will surely be uniquely 𝛽 small. The difficulty lies only

in ensuring we choose the correct nodes to cut so as not to collaborate with our

attempts to make 𝑇𝛽 eagerly generic in a way that prunes all infinite paths from

𝑇𝛽 .

Our solution is to work in the domain rather than the image and regard 𝜃𝛽+1
𝑠 (𝜎)

to have priority p𝜎q. Note that we assume that 𝜎 ⊂ 𝜏 implies that p𝜎q ≤ p𝜏q.
If at the end of stage 𝑠 we discover some minimal pair of strings 𝜎, 𝜏 and 𝑥 with

𝜃𝛽+1
𝑠 (𝜎)(𝑥), 𝜃𝛽+1

𝑠 (𝜏)(𝑥) < 𝜉𝛽+1
𝑠 (𝑥) where 𝜎 ̸= 𝜏 with p𝜏q < p𝜎q we set 𝜃𝛽+1

𝑠 (𝜎) to

be undefined. Note that by working in the domain if we act to meet some genericity

requirement by forcing all extensions of 𝜃𝛽+1
𝑠 (𝜎) to pass through 𝜏 the only way

𝜏 could later be pruned from the tree is if 𝜃𝛽+1
𝑠 (𝜎) is pruned from the tree so our

additional pruning can’t stop us from making 𝑇𝛽 eagerly generic. We now argue

that if 𝜎 ∈ 𝑇𝛽+1 then eventually 𝜃𝛽+1
𝑠 (𝜎) settles down to a node that never gets

pruned.

Assume that 𝜎 is the node on 𝑇𝛽+1 with least code at which the claim fails, 𝑠

is a stage large enough that for every 𝜎′ with with p𝜎′q < p𝜎q 𝜃𝛽+1
𝑠 (𝜎′) has settled

on it’s final value, 𝜎 never leaves 𝑇𝛽+1 after stage 𝑠 and that 𝑙 > |𝜃𝛽+1
𝑠 (𝜎′)| for

all such 𝜎′. Let 𝑠′ > 𝑠 be larger than 𝜉𝛽+1(𝑥) for all 𝑥 ≤ 𝑙 and 𝑠′′ > 𝑠′ the first

stage following 𝑠′ at which 𝜃𝛽+1
𝑠′′ (𝜎) is reset. If 𝑡 > 𝑠′′ then 𝜃𝛽+1

𝑠′′ (𝜎) ≫ 𝜉𝛽+1�𝑙 so

after 𝑠′′ 𝜃𝛽+1
𝑡 (𝜎) is never again reset on account of avoiding simultaneous smallness

and 𝜎 never leaves 𝑇𝛽+1 after 𝑠 so 𝜃𝛽+1
𝑡 (𝜎) isn’t reset after 𝑠′′ on account of the

homeomorphism requirements so it must be reset at some 𝑠′′′ > 𝑠′′ on account of the

genericity requirement. But now nothing can reset 𝜃𝛽+1
𝑡 (𝜎) if 𝑡 > 𝑠′′′. Contradiction.

This enough to complete our proof of theorem 4.3. Invoke lemma 4.7 to produce

a a uniquely small tower ⟨⟨𝑇𝛽⟩⟩𝛽≤𝒪𝛼 with 𝑇𝛼 ≤T 0(𝛼) homeomorphic to 𝜔<𝜔 with

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

23

𝑇𝛼 = 𝑇 * and set 𝑇 = 𝑇0, 𝑔 = 𝜗𝛼0 (𝑔*). Lemma 3.4 tells us that 𝑔 is 𝛼-generic on

𝑇 and as 𝑔 is non-isolated lemma 4.3 guarantees that no ℎ ≤tt 𝑔
(𝛽), 𝛽 <𝒪 𝛼 is a

uniform modulus for 𝑔. On the other hand as both 𝑔* and 𝜗𝛼0 are computable in

0(𝛼) so is 𝑔 and by lemma 4.6 this entails that 𝑔 is a self-modulus.

4.3. Functions Lacking Simple Moduli

Since every 𝛥1
1 function has a moduli one might also be prompted to ask whether

there are 𝛥1
1 degrees that are far from any modulus. Intuitively this should be true

for sufficiently generic degrees and we verify this is the case.

Theorem 4.4. If 𝑔 is a non-isolated path through 𝑇 and 𝑔 is 𝛼 generic on 𝑇

relative to 𝑇 ⟨∞⟩ then no ℎ ≤tt (𝑔⊕𝑇 ⟨∞⟩)(𝛽) for some 𝛽 <𝒪 𝛼 is a modulus for 𝑔 so

in particular no ℎ ≤tt 𝑔
(𝛽) is a modulus for 𝑔.

Proof. Let 𝑔 ∈ [𝑇] be 𝛽 + 1 ≤𝒪 𝛼 generic on 𝑇 relative to 𝑇 ⟨∞⟩ and let 𝛹 be

a truth table functional, i.e. a Turing functional total on all inputs. Suppose for a

contradiction that 𝑚𝑔 = 𝛹((𝑔 ⊕ 𝑇 ⟨∞⟩)(𝛽)), is a modulus for 𝑔. We work to build

some 𝑓 ≫ 𝑚𝑔 not computing 𝑔. Let 𝜎0 = ⟨⟨⟩⟩ and ℎ0 = 𝑚. At stage 𝑛+ 1 we define

𝜎𝑛 ⊇ 𝜎0 such that 𝜎𝑛 ≫ ℎ𝑔𝑛+1 and ℎ𝑔𝑛+1 ≤tt (𝑔 ⊕ 𝑇 ⟨∞⟩)(𝛽) with ℎ𝑔𝑛+1 ≫ ℎ𝑔𝑛. Thus

at each stage we commit to some initial segment of 𝑓 and a function that 𝑓 must

majorize. Our goal will be to force every Turing reduction from 𝑓 either to disagree

with 𝑔 or to be partial.

If there is a 𝜎 ⊇ 𝜎𝑛 with 𝜎 ≫ ℎ𝑔𝑛 forcing a disagreement between 𝛷𝑛(𝜎) and 𝑔

then let 𝜎𝑛+1 = 𝜎 and ℎ𝑔𝑛+1 = ℎ𝑔𝑛. Otherwise if there is some ℎ𝑔 ≤tt (𝑔 ⊕ 𝑇 ⟨∞⟩)(𝛽)

with ℎ𝑔 ≫ ℎ𝑔𝑛 and an integer 𝑥 such that no 𝜎 ⊇ 𝜎𝑛 with 𝜎 ≫ ℎ satisfies 𝛷𝑛(𝜎;𝑥)↓
then leave 𝜎𝑛+1 = 𝜎𝑛 and set ℎ𝑛+1 = ℎ. If one of these two alternatives is satisfied

for every 𝑛 then 𝑓 =
⋃︀

𝑛∈𝜔 𝜎𝑛 majorizes 𝑚𝑔 but fails to compute 𝑔 contradicting the

assumption. So suppose that for 𝜎 = 𝜎𝑛 and ℎ = ℎ𝑛 neither alternative is satisfied.

We note that since 𝑔 is non-isolated, computably in (𝑔 ⊕ 𝑇 ⟨∞⟩)(𝛽) one can enu-

merate an infinite list of distinct 𝛽 generic branches 𝑔𝑖 of 𝑇 with 𝑔𝑖�𝑖 = 𝑔�𝑖 and

ℎ𝑔𝑖�|𝜎| = ℎ𝑔�|𝜎| with the later property guaranteed simply by letting 𝑔𝑖 equal 𝑔 on a

long enough initial segment. Therefore we define ℎ̂𝑔 ≤T (𝑔⊕𝑇 ⟨∞⟩)(𝛽) so that ℎ̂𝑔(𝑥)

searches for 𝑙 and 𝑦 with 𝑔�𝑙
𝑇 ℎ𝑔(𝑥) = 𝑦 and then searches for values 𝑦𝑖 for each

𝑖 ≤ 𝑙 such that 𝑔𝑖
𝑇 ℎ𝑔𝑖(𝑥) = 𝑦𝑖 and returns a number larger than 𝑦 and all the 𝑦𝑖.

Such values 𝑦𝑖 must exist since ℎ𝑔𝑖 is total. Thus ℎ̂𝑔 ≫ ℎ𝑔, ℎ̂𝑔 ≫ ℎ𝑔𝑖 and 𝜎 ≫ ℎ̂𝑔.

Since 𝑔 is 𝛽 + 1 generic relative to 𝑇 on 𝑇 there is some 𝑙 such that 𝑔�𝑙 forces

the ¬𝜑 where 𝜑 is the 𝒞𝛴𝑇
𝛽 property that some extension 𝜎′ ⊇ 𝜎 with 𝜎′ ≫ ℎ𝑔

disagrees with 𝑔. Fix 𝑥 so that 𝑔(𝑥) ̸= 𝑔𝑙(𝑥) and pick 𝜏 ≫ ℎ̂𝑔 extending 𝜎 such

that 𝛷𝑛(𝜏 ;𝑥)↓. Such a 𝜏 must exist as otherwise ℎ̂ would have been a valid choice

for ℎ𝑛+1. Moreover 𝛷𝑛(𝜏 ;𝑥) = 𝑔(𝑥) since 𝑔 forced ¬𝜑 and 𝜏 ≫ ℎ̂𝑔 ≫ ℎ𝑔. But as

ℎ̂𝑔 ≫ ℎ𝑔𝑙 and 𝑔(𝑥) ̸= 𝑔𝑙(𝑥) we have 𝑔𝑙 |= 𝜑 and as 𝑔𝑙 is 𝛽 generic on 𝑇 some 𝜐 ∈ 𝑇 ⟨∞⟩

with 𝜐 ⊇ 𝑔�𝑙 forces 𝜑 contradicting the fact that 𝑔�𝑙 forced ¬𝜑.

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

24

The similarity between this result and lemma 4.3 is striking. Since lemma 4.3

was in some sense a reflection of the fact that 𝑔 has a uniform modulus truth table

computable within 𝛽 jumps if and only if 𝑔 is a 𝛱0
𝛽+1 singleton this naturally raises

the following open question.

Question 4.1. Can the self-moduli be characterized in terms of definability like

the characterization of the uniform self-moduli as the 𝛱0
1 singletons?

In particular we conjecture that 𝑔 is a self-modulus if and only if there is a

computable tree 𝑇 with 𝑔 ∈ [𝑇] and a 𝛱0
1 formula 𝜑(𝑇 ⟨∞⟩) such that for all 𝑇 ⊆ 𝑇

with 𝑔 ∈ [𝑇] the formula 𝜑(𝑇 ⟨∞⟩) is uniquely satisfied by 𝑔. Ideally, however, there

would be a simpler statement expressing the definability of the self-moduli.

Appendix A. Defining l(𝛽)

Here we make good on our promise to define l(𝛽) and 𝛽◇.

Definition A.1. A path from a limit notation 𝜆 to 𝛽 <𝒪 𝜆 to is a sequence

𝛾⃗ = (𝛾0, 𝛾1, . . . , 𝛾𝑛−1, 𝛾𝑛) of notations such that 𝛾0 = 𝜆, 𝛾𝑛 = 𝛽 and for every 𝑖 𝛾𝑖+1

appears in the effective limit for 𝛾𝑖, i.e.,

[∀ 𝑖 < 𝑛](∃𝑚)
(︁
𝛾𝑖+1 = 𝛾𝑖[𝑚]

)︁
A path 𝛾⃗ from 𝜆 to 𝛽 is minimal if 𝛾𝑖+1 = 𝛾𝑖[𝑚] for the least 𝑚 such that 𝛾𝑖+1[𝑚] ≥𝒪
𝛽.

Given an initial segment 𝐼 of ordinal notations for every 𝛽 ∈ 𝐼 let 𝛽◇ denote

the least limit notation 𝜆 >𝒪 𝛽 in 𝐼 with 𝛽 = 𝜆[𝑚] for some 𝑚. If no such notation

exists we write 𝛽◇ =↑

Definition A.2. A set 𝐼 of ordinal notations is nice if 𝐼 is a linearly ordered initial

segment of 𝒪 such that for any 𝛽 <𝒪 𝜆 ∈ 𝐼:

1. There is at most one path denoted 𝛽 ▷ 𝜆 from 𝜆 to 𝛽 and that path is minimal.

2. 𝛽 ▷ 𝜆 is defined whenever 𝜆[0] ≤𝒪 𝛽 <𝒪 𝜆.

3. There is no infinite sequence ⟨⟨𝜅𝑖⟩⟩𝑖∈𝜔 in 𝐼 such that for all 𝑖 𝜅𝑖 ▷ 𝜅𝑖+1 is defined.

We say an ordinal 𝛼 is nice if the set {𝛽|𝛽 ≤𝒪 𝛼} is nice.

Lemma A.1. If 𝐼 is a nice set of notations then there is a total function l(𝛽) on

𝐼 computable on every bounded initial segment 𝐼�𝛼 satisfying:

l(𝛽) =

{︃
0 if 𝛽◇ =↑
l(𝛽◇) + 𝑛 if 𝛽 = 𝛽◇

[𝑛]

𝜆[𝑛] <𝒪 𝛽 ≤𝒪 𝜆 =⇒ l(𝜆[𝑛]) < l(𝛽) (A.1a)

lim
𝑛→∞
l(𝜆[𝑛]) = ∞ (A.1b)

Moreover 𝛽◇ is also computable on any initial segment 𝐼�≤𝒪𝛼.

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

25

Proof. We first note that l(𝛽) is always finite as otherwise the sequence

⟨⟨𝛽, 𝛽◇, 𝛽◇◇, . . .⟩⟩ would violate part 3 of definition A.2. To verify (A.1a) note that

by applying the minimality of paths in 𝐼 we know that 𝛽 ▷ 𝜆 passes through 𝜆[𝑚]

for some 𝑚 > 𝑛. Claim (A.1b) now follows trivially by considering the paths from

𝜆 to 𝜆[𝑛]. It remains only to show the computability.

Now we show if 𝐼 has a maximal element 𝛼 then l(𝛽) is a computable function

on 𝐼. To this end we define a decreasing sequence of ordinals 𝜅𝑖 dividing 𝐼 into

connected pieces. Let 𝜅0 = 𝛼 and if 𝜅𝑖 is a limit ordinal set 𝜅𝑖+1 to be the predecessor

of the least 𝛽 with 𝛽 ▷ 𝜅𝑖 defined. If 𝜅𝑖 is a successor let 𝜅𝑖+1 be the predecessor

of 𝜅𝑖. Since this is a decreasing sequence of ordinals it must be finite thus for some

𝑛 𝜅𝑛 = 0 and by definition A.2 for every 𝛽 ∈ 𝐼 there is exactly one 𝜅𝑖 with 𝛽 ▷ 𝜅𝑖
defined. We may compute l(𝛽) by enumerating all paths from some 𝜅𝑖 until we find

some path 𝛽 ▷ 𝜅𝑖 at which point we may set l(𝛽) = ‖𝛽 ▷ 𝜅𝑖‖.

If 𝐼 lacks a maximal element we note there is an increasing sequence 𝛼𝑖 cofinal

in 𝐼 such that 𝛼𝑖
◇ isn’t defined for any 𝑖. By part 3 of definition A.2 we can build 𝛼𝑖

from any increasing cofinal sequence by repeatedly applying the operation taking

𝛽 to 𝛽◇ until no longer possible. Since the definition for l(𝛽) in 𝐼 and 𝐼�𝛼𝑖+1 agree

when 𝛽 ∈ 𝐼�𝛼𝑖+1 given 𝛼 we can simply compute l(𝛽) on 𝐼�𝛼𝑖+1 ⊇ 𝐼�𝛼 for an

appropriate 𝑖.

To compute 𝛽◇ on 𝐼�𝛼𝑖+1 we start listing 𝜆 ≤𝒪 𝛼𝑖 and look for a 𝜆 and integer

𝑛 such that 𝛽 = 𝜆[𝑛]. If such a pair is ever found we return 𝛽◇ = 𝜆. Simultaneously

we start listing the sequence 𝜅𝑖 defined from 𝛼 = 𝛼𝑖 and should we discover 𝜅𝑖 = 𝛽

we return 𝛽◇ =↑. The arguments given above guarantee that this is both a correct

and complete procedure.

We now must prove that there is a nice path through 𝒪. We start by showing that

we can computably build nice ordinal notations from arbitrary ordinal notations.

𝛼⃗ <𝐿 𝛽⃗
def⇐⇒ 𝛼⃗) 𝛽 ∨ (∃ 𝑙)(𝛼⃗�𝑙 = 𝛽�𝑙 ∧𝛼⃗(𝑙) <𝒪 𝛽(𝑙))

Lemma A.2. Given any 𝛼 there is a computable procedure terminating on all

𝛽 ≤𝒪 𝛼 yielding a finite sequence of notations 𝛽J = ⟨⟨𝛽0, 𝛽1, . . . , 𝛽𝑘⟩⟩ with 𝛼 =

𝛽0 >𝒪 𝛽1 >𝒪 . . . >𝒪 𝛽𝑘 = 𝛽 such that

𝛽 <𝒪 𝛾 ⇐⇒ 𝛽J <𝐿 𝛾
J

Proof. We wish to let 𝛽J control what sequences 𝜀⃗ ⊃ 𝛽J will be associated with

some notation so we tag each 𝛽J with a lower bound for notations appearing in

𝜀⃗ ⊃ 𝛽J when enumerated.

We start by enumerating 𝛼J = ⟨⟨𝛼⟩⟩ and assigning 𝛼J the lower bound 0. Sup-

pose we have already enumerated some 𝛽J = ⟨⟨. . . , 𝛽⟩⟩ with associated lower bound

𝜆 but have yet to enumerate any extension of 𝛽J. Here we search for the least 𝑛

such that 𝛽[𝑛] ≥𝒪 𝜆. Let 𝛾 be the least notations such that 𝛾 + 𝑚 = 𝛽[𝑛] for finite

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

26

𝑚 and 𝛾 ≥𝒪 𝜆 and enumerate 𝛾J = 𝛽Jˆ⟨⟨𝛾⟩⟩ with lower bound 𝜆. Otherwise let 𝜅

be the maximal notation with 𝜅J = 𝛽Jˆ⟨⟨𝜅⟩⟩ already enumerated. Now search for

the least 𝑛 with 𝛽[𝑛] ≥𝒪 𝜅 and let 𝛾 be the least notations such that 𝛾 +𝑚 = 𝛽[𝑛]
for finite 𝑚 and 𝛾 >𝒪 𝜅 and enumerate 𝛾J = 𝛽Jˆ⟨⟨𝛾⟩⟩ with lower bound 𝜅+ 1.

The construction clearly enumerates a sequence for every notation 𝛽 ≤𝒪 𝛼. Now

assume that 𝛽J <𝐿 𝛾
J. Let 𝜀⃗ = ⟨⟨. . . , 𝜆⟩⟩ be the longest common initial segment of

𝛽J, 𝛾J and 𝛽′, 𝛾′ such that 𝜀⃗ˆ⟨⟨𝛽′⟩⟩ ⊂ 𝛽J and 𝜀⃗ˆ⟨⟨𝛾′⟩⟩ ⊂ 𝛾J. During enumeration

𝜀̂⃗ ⟨⟨𝛾′⟩⟩ would have been tagged with a lower bound of at least 𝛽′ +1. Hence 𝛾 >𝒪 𝛽′

but 𝛽′ ≥𝒪 𝛽. Hence 𝛽 <𝒪 𝛾. To observe the other direction note that if 𝛽 <𝒪 𝛾

either 𝛽J <𝐿 𝛾J or 𝛾J <𝐿 𝛽J but the later possibility would entail that 𝛾 <𝒪 𝛽

so 𝛽J <𝐿 𝛾
J.

Lemma A.3. Given a notation 𝛼 we can effectively produce a nice notation 𝛼′ for

the same ordinal.

Proof. Given 𝛽 ≤𝒪 𝛼 construct the sequence 𝛽J as by the prior lemma. By trans-

finite recursion define the notation 𝛽 to be the successor of 𝛾 if 𝛽 is the successor of

𝛾 and the limit of 𝛾𝑖 where 𝛾J𝑖 = 𝛽J 𝛾̂𝑖 which is effective by the above construction.

Now if 𝜅 <𝒪 𝛽 then 𝜅J <𝐿 𝛽
J and hence for some 𝛾𝑖 𝜅

J ≤𝐿 𝛽
Jˆ⟨⟨𝛾𝑖⟩⟩ so 𝜅 ≤𝒪 𝛾𝑖.

Thus, lim𝑖→∞ 𝛾𝑖 = 𝛽. Moreover, note that there is a path from 𝜆′ to 𝛽′ only if 𝜆

appears in 𝛽J and that path is unique and minimal by construction satisfying part

1 of the definition. If 𝜆′[𝑛] <𝒪 𝛽 ≤𝒪 𝜆′[𝑛+1] then 𝜆J[𝑛] <𝐿 𝛽
J ≤𝐿 𝜆

J
[𝑛+1] so 𝜆J ⊆ 𝛽J

ensuring that part 2 of the definition is satisfied. Finally part 3 is trivially satisfied

as for each 𝛽 𝛽J is a finite string.

Lemma A.4. There is a nice set 𝐼 forming a path through 𝒪

Proof. Fix a unique path 𝒪 through 𝒪 and let 𝛼𝑖 be an increasing cofinal sequence

in 𝒪. Define 𝜅0 = 𝛼′
0 and 𝜅𝑖+1 = 𝜅𝑖 + 1 + 𝛼′

𝑖. By the definition of the effective

addition operation on notations there is no 𝜆 <𝒪 𝜅𝑖+1 with 𝜆 ≥𝒪 𝜅𝑖 + 1 and

𝛽 ≤𝒪 𝜅𝑖 connected by a path but the set of ordinals therefore it follows from the

fact that 𝛼′
𝑖 and 𝜅𝑖 are nice that 𝜅𝑖+1 is nice. Let 𝐼 = {𝛽|(∃ 𝑖)(𝛽 <𝒪 𝜅𝑖)}.

To simplify our notation slightly in the main body of the paper we’ve made use of

the fact that if 𝛽◇ is undefined then l(𝛽+1) = 0 so we may safely set 𝛽◇ = (𝛽 + 1)
◇

for any 𝛽 on which 𝛽◇ is undefined and by lemma A.1 can be done without imperiling

the computability of l(𝛽). Note our construction of our nice path through 𝒪 provides

a 𝛱1
1 set of notations 𝛼𝑖 cofinal in 𝒪 such that the computations giving 𝛽◇ and l(𝛽)

for every 𝛽 ≤𝒪 𝛼𝑖 can be uniformly computed from 𝛼𝑖. All constructions performed

in the main body of the paper can be taken to use ordinals that lie along this 𝛱1
1

path.

References

[1] L. A. Harrington. Mclaughlin’s conjecture. Handwritten Notes, September 1976.

December 15, 2010 11:15 WSPC/INSTRUCTION FILE non-unif-self-
moduli

27

[2] C. J. Ash, C. G. Jockusch, Jr., and J. F. Knight. Jumps of orderings. Trans. Amer.
Math. Soc., 319(2):573–599, 1990.

[3] C. J. Ash and J. Knight. Computable Structures and the Hyperarithmetical Hierarchy,
volume 144 of Studies in Logic and the Foundations of Mathematics. North-Holland
Publishing Co., Amsterdam, 2000.

[4] G. E. Sacks. Higher Recursion Theory. Perspectives in Mathematical Logic. Springer-
Verlag, Berlin, 1990.

[5] P. Odifreddi. Classical recursion theory. Vol. II, volume 143. North-Holland Publishing
Co., Amsterdam, 1999.

[6] B. A. Anderson. Reals n-generic relative to some perfect tree. 2006.
[7] H. Friedman. One hundred and two problems in mathematical logic. J. Symbolic Logic,

40:113–129, June 1975.
[8] H. G. Rice. Recursive and recursively enumerable orders. Trans. Amer. Math. Soc.,

83:277–300, 1956.
[9] C. E. M. Yates. Three theorems on the degrees of recursively enumerable sets. Duke

Math. J, 32(3):461–468, 1965.
[10] D. A. Martin. Classes of recursively enumerable sets and degrees of unsolvability.

Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 12:295–310,
1966.

[11] N. L. Dobrinen and S. G. Simpson. Almost everywhere domination. J. Symbolic Logic,
69(3):914–922, 2004.

[12] S. Binns, B. Kjos-Hanssen, M. Lerman, and R. Solomon. On a conjecture of Dobrinen
and Simpson concerning almost everywhere domination. J. Symbolic Logic, 71(1):119–
136, 2006.

[13] S. G. Simpson. Almost everywhere domination and superhighness. MLQ. Mathemat-
ical Logic Quarterly, 53:462–482, 2007.

[14] B. Kjos-Hanssen. Low for random reals and positive-measure domination. Proceedings
of the American Mathematical Society, 135(11):3703–3710, 2007.

[15] S. G. Simpson. Mass problems and almost everywhere domination. MLQ. Mathemat-
ical Logic Quarterly, 53:483–492, 2007.

[16] P. A. Cholak, N. Greenberg, and J. S. Miller. Uniform almost everywhere domination.
Journal of Symbolic Logic, 71:1057–1072, 2006.

[17] M. J. Groszek and T. A. Slaman. Moduli of computation (talk). Buenos Aires, Ar-
gentina, January 2007.

[18] C. G. Jockusch, Jr. and T. G. McLaughlin. Countable retracing functions and 𝛱0
2

predicates. Pacific J. Math., 30(1):67–93, 1969.
[19] A. V. Kuznecov and B. A. Trahtenbrot. Investigation of partially recursive operators

by means of the theory of baire space. Dokl. Akad. Nauk SSSR (N.S.), 105:897–900,
1955.

[20] J. Myhill. Finitely representable functions. In A. Heyting, editor, Constructivity in
mathematics: Proceedings of the colloquium held at Amsterdam, 1957, Studies in Logic
and the Foundations of Mathematics, pages 195–207. North Holland Publishing Co.,
Amsterdam, 1959.

[21] R. M. Solovay. Hyperarithmetically encodable sets. Transactions of the American
Mathematical Society, 239:99–122, May 1978.

