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Background
Uniform Moduli

Nonuniform Moduli

Definitions and Notation

Notation
Say σ � τ if σ(n) ≥ τ(n) everywhere they are both defined.

So if f ,g ∈ ωω then f � g ↔ (∀n)[f (n) ≥ g(n)]

Definitions
Let f ∈ ωω and X ⊂ ω.

f is a modulus (of computation) for X if for all g ∈ ωω if
g � f =⇒ g ≥T X .
f is a uniform modulus for X if there is a recursive
functional Φ such that g � f =⇒ Φ (g) = X .
f is a self-modulus if f is a modulus for f
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Uniform Moduli

Nonuniform Moduli

Moduli of Computation

f

Let f be a modulus for X .
Then g1 � f =⇒ g1 ≥T X
Same with g2

f is a uniform modulus if
the same reduction works
for all g � f .
Suppose h is faster
growing than f .
Then h computes X .
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Uniform Moduli

Nonuniform Moduli

Basic Facts

Observation
Every α-REA degree has a uniform self-modulus.

Observation

Every ∆0
2 degree has a uniform self-modulus.

Modify proof that ∆0
2 degrees are hyperimmune.

Theorem (Slaman and Groszek)

There is a uniform self-modulus that computes no non-recursive ∆0
2-set.

Theorem
For every α there is a uniform self-modulus that computes no non-recursive
∆0
α-set.
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Uniform Moduli

Nonuniform Moduli

What Degrees Have Moduli?

Theorem (Slaman and Groszek)

X has a modulus if and only if X is ∆1
1.

Proof.

⇐ 0˜(α) has a uniform self-modulus. Call it θα

⇒ If X has a modulus f then it must also have a uniform
modulus f̂ .

Try to build g � f , g �T X with Hechler conditions.
This must fail producing a uniform modulus (and uniform
reduction).

A uniform reduction provides a ∆1
1 definition for X

The uniform modulus produced may be very complex
relative to the modulus.Peter Gerdes Non-uniform Self-Moduli
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Uniform Moduli

Nonuniform Moduli

Uniformity

Question
Can we bound the complexity of a uniform modulus for X
relative to a modulus for X?

Sufficent to examine self-moduli.
Particularly interesting since there is a nice
characterization of degrees with uniform self-moduli but
not (yet?) for degrees with self-moduli.

Theorem

d˜ contains a uniform self-modulus iff d˜ contains a Π0
2 singleton.
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Nonuniform Moduli

Partial Answer

Theorem

For all n ∈ ω there is a self-modulus f so that no h ≤T f (n) is a
uniform modulus for f .

Remark
Going past ω is deceptively hard.

Plan
1 Find a simple property guaranteeing no h ≤T f (n) is a

uniform modulus for f .
2 Build a self-modulus satisfying this property.
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Uniform Moduli

Nonuniform Moduli

Avoiding Uniformity

Lemma

If f is n + 2 locally generic on a perfect tree T no h ≤T f (n) is a
uniform modulus for f .

Proof.

Suppose Φ witnesses h = ϕi(f (n)) violates the lemma.
Pick k so f �k forces both that:

1 h = ϕi (f (n)) is total.
2 If σ ∈ ω<ω and σ � h then Φ (σ) ⊂ f

Let f̂ ⊃ f �k be a distinct n + 2 generic path through T .
h and ĥ must be total so pick g � h, ĥ.
But Φ (g) ⊂ f and Φ (g) ⊂ f̂ so it can’t be total.
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Uniform Moduli

Nonuniform Moduli

Guaranteeing Reductions

Uniform Reductions

Build f computably in 0˜(n+2)

If g � θn+2 then (uniformly) g ≥T f

How can we guarantee every ‘small’ g � f computes f?
Non-uniformity requires our procedure fails for ‘large’ g

Idea!
Use smallness of g to recover f .
For each k < n + 2 encode f into locations f dips below θk .
Since g � f we can recover infinitely many of these
locations.
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Uniform Moduli

Nonuniform Moduli

First Attempt

Naive Strategy

Create sequence of trees Tk ⊂ Tk−1 for 1 ≤ k ≤ n + 2 with
Tk+1 representing our attempts to meet Σ0

k+1 sets on Tk .
Prune Tk to ensure at most one σ ∈ Tk+1 of length x − 1
satisfies σ(x) < θk+1(x)

Let k be least such that g �T 0˜(k+1).
Infinitely often g must dip below θk+1.
g can enumerate the set of x with g(x) < θk+1(x).
f �x is unique σ ∈ Tk+1 with σ(x) ≤ g(x).
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Background
Uniform Moduli

Nonuniform Moduli

Problems

1 Need to incorporate multiple strings from Tk in Tk+1 that
aren’t above θk+1

Solution

τ ∈ Tk+1 must dip below θk+1 for a 0˜(k)-long interval for
uniqueness.

Achieved by ‘cancelling’ lower priority strings that dip in wrong
places.

2 Tk+1 is a ∆0
k+2 set and g only computes 0˜(k)

Solution
Tk+1 = lims→∞ Tk+1[s]
Use priority argument to ensure that g(x) is large enough to
believe f �x∈ Tk+1 at true stages.
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Problems

1 Need to incorporate multiple strings from Tk in Tk+1 that
aren’t above θk+1

Solution

τ ∈ Tk+1 must dip below θk+1 for a 0˜(k)-long interval for
uniqueness.

Achieved by ‘cancelling’ lower priority strings that dip in wrong
places.

2 Tk+1 is a ∆0
k+2 set and g only computes 0˜(k)

Solution
Tk+1 = lims→∞ Tk+1[s]
Use priority argument to ensure that g(x) is large enough to
believe f �x∈ Tk+1 at true stages.
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Picturing The Construction

g � f searches for stage to commit to f using T1

∆0
2 guess at T1 changes with stage.

Approximation to θ1 increasing to θ1

When g(x) < θ1(x)[s] then T1[s] gives unique value for
f �x .

g

Function g that wants to compute f
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Uniform Moduli

Nonuniform Moduli

Picturing The Construction

g � f searches for stage to commit to f using T1

∆0
2 guess at T1 changes with stage.

Approximation to θ1 increasing to θ1

When g(x) < θ1(x)[s] then T1[s] gives unique value for
f �x .

θ1

Final fast growing function of degree 0˜′.
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Nonuniform Moduli

Picturing The Construction

g � f searches for stage to commit to f using T1

∆0
2 guess at T1 changes with stage.

Approximation to θ1 increasing to θ1

When g(x) < θ1(x)[s] then T1[s] gives unique value for
f �x .

Final tree T1 of possible paths for f
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Nonuniform Moduli

Picturing The Construction

g � f searches for stage to commit to f using T1

∆0
2 guess at T1 changes with stage.

Approximation to θ1 increasing to θ1

When g(x) < θ1(x)[s] then T1[s] gives unique value for
f �x .

g

θ1

step: 2

Membership in T1 changes during computation steps.
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Picturing The Construction

g � f searches for stage to commit to f using T1

∆0
2 guess at T1 changes with stage.

Approximation to θ1 increasing to θ1

When g(x) < θ1(x)[s] then T1[s] gives unique value for
f �x .

g

θ1

step: 3

Membership in T1 changes during computation steps.
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Picturing The Construction

g � f searches for stage to commit to f using T1

∆0
2 guess at T1 changes with stage.

Approximation to θ1 increasing to θ1

When g(x) < θ1(x)[s] then T1[s] gives unique value for
f �x .

g

θ1

step: 4

Membership in T1 changes during computation steps.
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Nonuniform Moduli

Picturing The Construction

g � f searches for stage to commit to f using T1

∆0
2 guess at T1 changes with stage.

Approximation to θ1 increasing to θ1

When g(x) < θ1(x)[s] then T1[s] gives unique value for
f �x .

g

θ1

step: 5

Membership in T1 changes during computation steps.
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Background
Uniform Moduli

Nonuniform Moduli

Picturing The Construction

g � f searches for stage to commit to f using T1

∆0
2 guess at T1 changes with stage.

Approximation to θ1 increasing to θ1

When g(x) < θ1(x)[s] then T1[s] gives unique value for
f �x .

g

θ1

step: 6

At this step g notices a value at which it is small.
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Uniform Moduli

Nonuniform Moduli

Picturing The Construction

g � f searches for stage to commit to f using T1

∆0
2 guess at T1 changes with stage.

Approximation to θ1 increasing to θ1

When g(x) < θ1(x)[s] then T1[s] gives unique value for
f �x .

g

θ1

step: 6

Construction guarantees that no false path is below g
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Nonuniform Moduli

Picturing The Construction

g � f searches for stage to commit to f using T1

∆0
2 guess at T1 changes with stage.

Approximation to θ1 increasing to θ1

When g(x) < θ1(x)[s] then T1[s] gives unique value for
f �x .

g

θ1

step: 6

g can commit to an initial segment of f
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