Non-uniform Self-Moduli

Peter Gerdes

Group in Logic University of California, Berkeley

2007-08 ASL Winter Meeting

イロト イポト イヨト イヨト

3

Definitions and Notation

Notation

Say $\sigma \succ \tau$ if $\sigma(n) \ge \tau(n)$ everywhere they are both defined.

• So if $f, g \in \omega^{\omega}$ then $f \succ g \leftrightarrow (\forall n)[f(n) \ge g(n)]$

Definitions

Let $f \in \omega^{\omega}$ and $X \subset \omega$.

- *f* is a modulus (of computation) for X if for all $g \in \omega^{\omega}$ if $g \succ f \implies g \geq_T X$.
- *f* is a *uniform modulus* for *X* if there is a recursive functional Φ such that *g* ≻ *f* ⇒ Φ(*g*) = *X*.
- f is a self-modulus if f is a modulus for f

イロト イポト イヨト イヨト

Definitions and Notation

Notation

Say $\sigma \succ \tau$ if $\sigma(n) \ge \tau(n)$ everywhere they are both defined.

• So if $f, g \in \omega^{\omega}$ then $f \succ g \leftrightarrow (\forall n)[f(n) \ge g(n)]$

Definitions

Let $f \in \omega^{\omega}$ and $X \subset \omega$.

- *f* is a modulus (of computation) for X if for all $g \in \omega^{\omega}$ if $g \succ f \implies g \geq_T X$.
- *f* is a *uniform modulus* for *X* if there is a recursive functional Φ such that $g \succ f \implies \Phi(g) = X$.
- f is a self-modulus if f is a modulus for f

ヘロン 人間 とくほ とくほ とう

3

Definitions and Notation

Notation

Say $\sigma \succ \tau$ if $\sigma(n) \ge \tau(n)$ everywhere they are both defined.

• So if $f, g \in \omega^{\omega}$ then $f \succ g \leftrightarrow (\forall n)[f(n) \ge g(n)]$

Definitions

Let $f \in \omega^{\omega}$ and $X \subset \omega$.

- *f* is a modulus (of computation) for X if for all $g \in \omega^{\omega}$ if $g \succ f \implies g \ge_T X$.
- *f* is a *uniform modulus* for *X* if there is a recursive functional Φ such that *g* ≻ *f* ⇒ Φ(*g*) = *X*.
- f is a self-modulus if f is a modulus for f

ヘロン 人間 とくほ とくほ とう

= 990

Definitions and Notation

Notation

Say $\sigma \succ \tau$ if $\sigma(n) \ge \tau(n)$ everywhere they are both defined.

• So if $f, g \in \omega^{\omega}$ then $f \succ g \leftrightarrow (\forall n)[f(n) \ge g(n)]$

Definitions

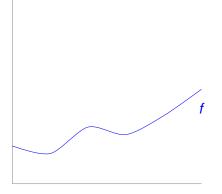
Let $f \in \omega^{\omega}$ and $X \subset \omega$.

- *f* is a modulus (of computation) for X if for all $g \in \omega^{\omega}$ if $g \succ f \implies g \ge_T X$.
- *f* is a *uniform modulus* for *X* if there is a recursive functional Φ such that *g* ≻ *f* ⇒ Φ(*g*) = *X*.
- f is a self-modulus if f is a modulus for f

ヘロン 人間 とくほ とくほ とう

3

Moduli of Computation



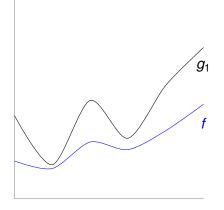
• Let *f* be a modulus for *X*.

- Then $g_1 \succ f \implies g_1 \geq_T X$
- Same with g₂
- *f* is a uniform modulus if the same reduction works for all *g* ≻ *f*.

ヘロト ヘアト ヘヨト ヘ

ъ

- Suppose *h* is faster growing than *f*.
- Then *h* computes *X*.

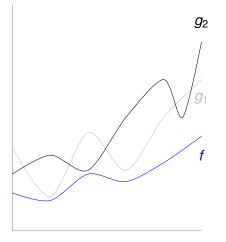


- Let *f* be a modulus for *X*.
- Then $g_1 \succ f \implies g_1 \geq_T X$
- Same with g₂
- *f* is a uniform modulus if the same reduction works for all *g* ≻ *f*.

イロト イポト イヨト イヨト

- Suppose *h* is faster growing than *f*.
- Then *h* computes *X*.

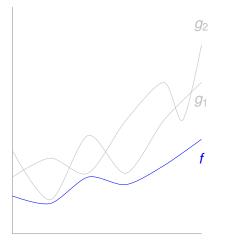
Moduli of Computation



- Let *f* be a modulus for *X*.
- Then $g_1 \succ f \implies g_1 \geq_T X$
- Same with g₂
- *f* is a uniform modulus if the same reduction works for all *g* ≻ *f*.
- Suppose *h* is faster growing than *f*.
- Then *h* computes *X*.

• • • • • • • • • • • •

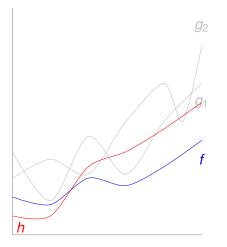
.⊒...>



- Let *f* be a modulus for *X*.
- Then $g_1 \succ f \implies g_1 \geq_T X$
- Same with g₂
- *f* is a uniform modulus if the same reduction works for all *g* ≻ *f*.

イロト イポト イヨト イヨト

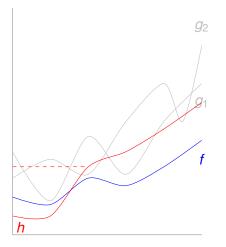
- Suppose *h* is faster growing than *f*.
- Then *h* computes *X*.



- Let *f* be a modulus for *X*.
- Then $g_1 \succ f \implies g_1 \geq_T X$
- Same with g₂
- *f* is a uniform modulus if the same reduction works for all *g* ≻ *f*.

イロト イポト イヨト イヨト

- Suppose *h* is faster growing than *f*.
- Then *h* computes *X*.



- Let *f* be a modulus for *X*.
- Then $g_1 \succ f \implies g_1 \ge_T X$
- Same with g₂
- *f* is a uniform modulus if the same reduction works for all *g* ≻ *f*.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Suppose *h* is faster growing than *f*.
- Then *h* computes *X*.

Basic Facts

Observation

Every α -REA degree has a uniform self-modulus.

Observation

Every Δ_2^0 degree has a uniform self-modulus.

• Modify proof that Δ_2^0 degrees are hyperimmune.

Theorem (Slaman and Groszek)

There is a uniform self-modulus that computes no non-recursive Δ_2^0 -set.

Theorem

For every α there is a uniform self-modulus that computes no non-recursive Δ^0_{α} -set.

イロト 不得 とくほ とくほとう

Basic Facts

Observation

Every α -REA degree has a uniform self-modulus.

Observation

Every Δ_2^0 degree has a uniform self-modulus.

• Modify proof that Δ_2^0 degrees are hyperimmune.

Theorem (Slaman and Groszek)

There is a uniform self-modulus that computes no non-recursive Δ_2^0 -set.

Theorem

For every α there is a uniform self-modulus that computes no non-recursive Δ^0_{α} -set.

イロト 不得 とくほ とくほとう

Basic Facts

Observation

Every α -REA degree has a uniform self-modulus.

Observation

Every Δ_2^0 degree has a uniform self-modulus.

• Modify proof that Δ_2^0 degrees are hyperimmune.

Theorem (Slaman and Groszek)

There is a uniform self-modulus that computes no non-recursive Δ_2^0 -set.

Theorem

For every α there is a uniform self-modulus that computes no non-recursive Δ^0_{α} -set.

イロト 不得 とくほと くほとう

э

Basic Facts

Observation

Every α -REA degree has a uniform self-modulus.

Observation

Every Δ_2^0 degree has a uniform self-modulus.

• Modify proof that Δ_2^0 degrees are hyperimmune.

Theorem (Slaman and Groszek)

There is a uniform self-modulus that computes no non-recursive Δ_2^0 -set.

Theorem

For every α there is a uniform self-modulus that computes no non-recursive $\Delta^0_\alpha\text{-set.}$

イロト 不得 とくほ とくほとう

э

Basic Facts

Observation

Every α -REA degree has a uniform self-modulus.

Observation

Every Δ_2^0 degree has a uniform self-modulus.

• Modify proof that Δ_2^0 degrees are hyperimmune.

Theorem (Slaman and Groszek)

There is a uniform self-modulus that computes no non-recursive Δ_2^0 -set.

Theorem

For every α there is a uniform self-modulus that computes no non-recursive Δ^0_{α} -set.

ヘロア ヘビア ヘビア・

What Degrees Have Moduli?

Theorem (Slaman and Groszek)

X has a modulus if and only if X is Δ_1^1 .

Proof.

- $\in \mathfrak{Q}^{(lpha)}$ has a uniform self-modulus. Call it $heta^{lpha}$
- ⇒ If X has a modulus f then it must also have a uniform modulus \hat{f} .
 - Try to build $g \succ f$, $g \not\geq_T X$ with Hechler conditions.
 - This must fail producing a uniform modulus (and uniform reduction).

A uniform reduction provides a Δ_1^1 definition for X

The uniform modulus produced may be very complex,

What Degrees Have Moduli?

Theorem (Slaman and Groszek)

X has a modulus if and only if X is Δ_1^1 .

Proof.

- $\leftarrow 0^{(\alpha)}$ has a uniform self-modulus. Call it θ^{α}
- ⇒ If X has a modulus f then it must also have a uniform modulus \hat{f} .
 - Try to build $g \succ f$, $g \not\geq_T X$ with Hechler conditions.
 - This must fail producing a uniform modulus (and uniform reduction).

A uniform reduction provides a Δ_1^1 definition for X

The uniform modulus produced may be very complex,

What Degrees Have Moduli?

Theorem (Slaman and Groszek)

X has a modulus if and only if X is Δ_1^1 .

Proof.

- $\leftarrow 0^{(\alpha)}$ has a uniform self-modulus. Call it θ^{α}
- ⇒ If X has a modulus f then it must also have a uniform modulus \hat{f} .
 - Try to build $g \succ f, g \not\geq_T X$ with Hechler conditions.
 - This must fail producing a uniform modulus (and uniform reduction).

A uniform reduction provides a Δ_1^1 definition for X

The uniform modulus produced may be very complex.

What Degrees Have Moduli?

Theorem (Slaman and Groszek)

X has a modulus if and only if X is Δ_1^1 .

Proof.

- $\leftarrow 0^{(\alpha)}$ has a uniform self-modulus. Call it θ^{α}
- \Rightarrow If X has a modulus f then it must also have a uniform modulus \hat{f} .
 - Try to build $g \succ f$, $g \not\geq_T X$ with Hechler conditions.
 - This must fail producing a uniform modulus (and uniform reduction).

A uniform reduction provides a Δ_1^1 definition for X

The uniform modulus produced may be very complex.

What Degrees Have Moduli?

Theorem (Slaman and Groszek)

X has a modulus if and only if X is Δ_1^1 .

Proof.

- $\leftarrow 0^{(\alpha)}$ has a uniform self-modulus. Call it θ^{α}
- ⇒ If X has a modulus f then it must also have a uniform modulus \hat{f} .
 - Try to build $g \succ f$, $g \not\geq_T X$ with Hechler conditions.
 - This must fail producing a uniform modulus (and uniform reduction).

A uniform reduction provides a Δ_1^1 definition for X

The uniform modulus produced may be very complex,

What Degrees Have Moduli?

Theorem (Slaman and Groszek)

X has a modulus if and only if X is Δ_1^1 .

Proof.

- $\leftarrow 0^{(\alpha)}$ has a uniform self-modulus. Call it θ^{α}
- ⇒ If X has a modulus f then it must also have a uniform modulus \hat{f} .
 - Try to build $g \succ f$, $g \not\geq_T X$ with Hechler conditions.
 - This must fail producing a uniform modulus (and uniform reduction).

A uniform reduction provides a Δ_1^1 definition for X

The uniform modulus produced may be very complex.

What Degrees Have Moduli?

Theorem (Slaman and Groszek)

X has a modulus if and only if X is Δ_1^1 .

Proof.

- $\leftarrow 0^{(\alpha)}$ has a uniform self-modulus. Call it θ^{α}
- ⇒ If X has a modulus f then it must also have a uniform modulus \hat{f} .
 - Try to build $g \succ f$, $g \not\geq_T X$ with Hechler conditions.
 - This must fail producing a uniform modulus (and uniform reduction).

A uniform reduction provides a Δ_1^1 definition for X

The uniform modulus produced may be very complex

Uniformity

Question

Can we bound the complexity of a uniform modulus for X relative to a modulus for X?

- Sufficent to examine self-moduli.
- Particularly interesting since there is a nice characterization of degrees with uniform self-moduli but not (yet?) for degrees with self-moduli.

Theorem

d contains a uniform self-modulus iff d contains a Π_2^0 singleton.

イロト イポト イヨト イヨト

Uniformity

Question

Can we bound the complexity of a uniform modulus for X relative to a modulus for X?

• Sufficent to examine self-moduli.

 Particularly interesting since there is a nice characterization of degrees with uniform self-moduli but not (yet?) for degrees with self-moduli.

Theorem

d contains a uniform self-modulus iff d contains a Π_2^0 singleton.

くロト (過) (目) (日)

Uniformity

Question

Can we bound the complexity of a uniform modulus for X relative to a modulus for X?

- Sufficent to examine self-moduli.
- Particularly interesting since there is a nice characterization of degrees with uniform self-moduli but not (yet?) for degrees with self-moduli.

Theorem

 \underline{d} contains a uniform self-modulus iff \underline{d} contains a Π_2^0 singleton.

イロト イポト イヨト イヨト

Partial Answer

Theorem

For all $n \in \omega$ there is a self-modulus f so that no $h \leq_T f^{(n)}$ is a uniform modulus for f.

Remark

Going past ω is deceptively hard.

Plan

- Find a simple property guaranteeing no $h \leq_T f^{(n)}$ is a uniform modulus for f.
- Build a self-modulus satisfying this property.

くロト (過) (目) (日)

Partial Answer

Theorem

For all $n \in \omega$ there is a self-modulus f so that no $h \leq_T f^{(n)}$ is a uniform modulus for f.

Remark

Going past ω is deceptively hard.

Plan

- Find a simple property guaranteeing no $h \leq_T f^{(n)}$ is a uniform modulus for f.
- Build a self-modulus satisfying this property.

ヘロト 人間 ト ヘヨト ヘヨト

э

Partial Answer

Theorem

For all $n \in \omega$ there is a self-modulus f so that no $h \leq_T f^{(n)}$ is a uniform modulus for f.

Remark

Going past ω is deceptively hard.

Plan

- Find a simple property guaranteeing no $h \leq_T f^{(n)}$ is a uniform modulus for *f*.
 - Build a self-modulus satisfying this property.

イロト イポト イヨト イヨト

Partial Answer

Theorem

For all $n \in \omega$ there is a self-modulus f so that no $h \leq_T f^{(n)}$ is a uniform modulus for f.

Remark

Going past ω is deceptively hard.

Plan

- Find a simple property guaranteeing no $h \leq_T f^{(n)}$ is a uniform modulus for *f*.
- Build a self-modulus satisfying this property.

ヘロト ヘ戸ト ヘヨト ヘヨト

Avoiding Uniformity

Lemma

If f is n + 2 locally generic on a perfect tree T no $h \leq_T f^{(n)}$ is a uniform modulus for f.

- Suppose Φ witnesses $h = \varphi_i(f^{(n)})$ violates the lemma.
- Pick k so $f \upharpoonright_k$ forces both that:
 - () $h = \varphi_i(f^{(n)})$ is total.
 - If $\sigma \in \omega^{<\omega}$ and $\sigma \succ h$ then $\Phi(\sigma) \subset f$
- Let $\hat{f} \supset f \upharpoonright_k$ be a distinct n + 2 generic path through T.
- h and \hat{h} must be total so pick $g \succ h, \hat{h}$.
- But $\Phi(g) \subset f$ and $\Phi(g) \subset \hat{f}$ so it can't be total.

Avoiding Uniformity

Lemma

If f is n + 2 locally generic on a perfect tree T no $h \leq_T f^{(n)}$ is a uniform modulus for f.

- Suppose Φ witnesses $h = \varphi_i(f^{(n)})$ violates the lemma.
- Pick k so $f \upharpoonright_k$ forces both that:
 - 1 $h = \varphi_i(f^{(n)})$ is total.
 - 2 If $\sigma \in \omega^{<\omega}$ and $\sigma \succ h$ then $\Phi(\sigma) \subset f$
- Let $\hat{f} \supset f \upharpoonright_k$ be a distinct n + 2 generic path through T.
- *h* and \hat{h} must be total so pick $g \succ h, \hat{h}$.
- But $\Phi(g) \subset f$ and $\Phi(g) \subset \hat{f}$ so it can't be total.

Avoiding Uniformity

Lemma

If f is n + 2 locally generic on a perfect tree T no $h \leq_T f^{(n)}$ is a uniform modulus for f.

- Suppose Φ witnesses $h = \varphi_i(f^{(n)})$ violates the lemma.
- Pick k so $f \upharpoonright_k$ forces both that:
 - $h = \varphi_i(f^{(n)})$ is total.
 - 2 If $\sigma \in \omega^{<\omega}$ and $\sigma \succ h$ then $\Phi(\sigma) \subset f$
- Let $\hat{f} \supset f \upharpoonright_k$ be a distinct n + 2 generic path through T.
- *h* and \hat{h} must be total so pick $g \succ h, \hat{h}$.
- But $\Phi(g) \subset f$ and $\Phi(g) \subset \hat{f}$ so it can't be total.

Avoiding Uniformity

Lemma

If f is n + 2 locally generic on a perfect tree T no $h \leq_T f^{(n)}$ is a uniform modulus for f.

- Suppose Φ witnesses $h = \varphi_i(f^{(n)})$ violates the lemma.
- Pick k so $f \upharpoonright_k$ forces both that:
 - $h = \varphi_i(f^{(n)})$ is total.
 - 2 If $\sigma \in \omega^{<\omega}$ and $\sigma \succ h$ then $\Phi(\sigma) \subset f$
- Let $\hat{f} \supset f \upharpoonright_k$ be a distinct n + 2 generic path through T.
- *h* and \hat{h} must be total so pick $g \succ h, \hat{h}$.
- But $\Phi(g) \subset f$ and $\Phi(g) \subset \hat{f}$ so it can't be total.

Avoiding Uniformity

Lemma

If f is n + 2 locally generic on a perfect tree T no $h \leq_T f^{(n)}$ is a uniform modulus for f.

- Suppose Φ witnesses $h = \varphi_i(f^{(n)})$ violates the lemma.
- Pick k so $f \upharpoonright_k$ forces both that:
 - $h = \varphi_i(f^{(n)})$ is total.
 - 2 If $\sigma \in \omega^{<\omega}$ and $\sigma \succ h$ then $\Phi(\sigma) \subset f$
- Let $\hat{f} \supset f \upharpoonright_k$ be a distinct n + 2 generic path through T.
- *h* and \hat{h} must be total so pick $g \succ h, \hat{h}$.
- But $\Phi(g) \subset f$ and $\Phi(g) \subset \hat{f}$ so it can't be total.

Avoiding Uniformity

Lemma

If f is n + 2 locally generic on a perfect tree T no $h \leq_T f^{(n)}$ is a uniform modulus for f.

- Suppose Φ witnesses $h = \varphi_i(f^{(n)})$ violates the lemma.
- Pick k so $f \upharpoonright_k$ forces both that:
 - $h = \varphi_i(f^{(n)})$ is total.
 - 2 If $\sigma \in \omega^{<\omega}$ and $\sigma \succ h$ then $\Phi(\sigma) \subset f$
- Let $\hat{f} \supset f \upharpoonright_k$ be a distinct n + 2 generic path through T.
- *h* and \hat{h} must be total so pick $g \succ h, \hat{h}$.
- But $\Phi(g) \subset f$ and $\Phi(g) \subset \hat{f}$ so it can't be total.

Background Uniform Moduli Nonuniform Moduli

Guaranteeing Reductions

Uniform Reductions

- Build *f* computably in $\underline{0}^{(n+2)}$
- If $g \succ \theta^{n+2}$ then (uniformly) $g \ge_T f$

How can we guarantee every 'small' $g \succ f$ computes f? Non-uniformity requires our procedure fails for 'large' g

Idea!

- Use smallness of *g* to recover *f*.
- For each k < n + 2 encode *f* into locations *f* dips below θ^k .
- Since g ≻ f we can recover infinitely many of these locations.

・ロット (雪) () () () ()

э

Guaranteeing Reductions

Uniform Reductions

- Build *f* computably in $\underline{0}^{(n+2)}$
- If $g \succ \theta^{n+2}$ then (uniformly) $g \ge_T f$

How can we guarantee every 'small' $g \succ f$ computes f? Non-uniformity requires our procedure fails for 'large' g

Idea!

- Use smallness of *g* to recover *f*.
- For each k < n + 2 encode *f* into locations *f* dips below θ^k .
- Since g ≻ f we can recover infinitely many of these locations.

ヘロン ヘアン ヘビン ヘビン

ъ

Guaranteeing Reductions

Uniform Reductions

- Build *f* computably in $\underline{0}^{(n+2)}$
- If $g \succ \theta^{n+2}$ then (uniformly) $g \ge_T f$

How can we guarantee every 'small' $g \succ f$ computes f? Non-uniformity requires our procedure fails for 'large' g

Idea!

- Use smallness of g to recover f.
- For each k < n + 2 encode f into locations f dips below θ^k .
- Since g ≻ f we can recover infinitely many of these locations.

ヘロト ヘ戸ト ヘヨト ヘヨト

э

Naive Strategy

• Create sequence of trees $T_k \subset T_{k-1}$ for $1 \le k \le n+2$ with T_{k+1} representing our attempts to meet Σ_{k+1}^0 sets on T_k .

Prune *T_k* to ensure at most one *σ* ∈ *T_{k+1}* of length *x* − 1 satisfies *σ*(*x*) < θ^{k+1}(*x*)

- Let *k* be least such that $g \not\geq_T 0^{(k+1)}$.
- Infinitely often g must dip below θ^{k+1} .
- *g* can enumerate the set of *x* with $g(x) < \theta^{k+1}(x)$.
- $f \upharpoonright_x$ is unique $\sigma \in T_{k+1}$ with $\sigma(x) \leq g(x)$.

Naive Strategy

- Create sequence of trees $T_k \subset T_{k-1}$ for $1 \le k \le n+2$ with T_{k+1} representing our attempts to meet Σ_{k+1}^0 sets on T_k .
- Prune *T_k* to ensure at most one *σ* ∈ *T_{k+1}* of length *x* − 1 satisfies *σ*(*x*) < θ^{k+1}(*x*)
- Let *k* be least such that $g \not\geq_T 0^{(k+1)}$.
- Infinitely often g must dip below θ^{k+1} .
- *g* can enumerate the set of *x* with $g(x) < \theta^{k+1}(x)$.
- $f \upharpoonright_x$ is unique $\sigma \in T_{k+1}$ with $\sigma(x) \leq g(x)$.

Naive Strategy

- Create sequence of trees $T_k \subset T_{k-1}$ for $1 \le k \le n+2$ with T_{k+1} representing our attempts to meet Σ_{k+1}^0 sets on T_k .
- Prune *T_k* to ensure at most one *σ* ∈ *T_{k+1}* of length *x* − 1 satisfies *σ*(*x*) < θ^{k+1}(*x*)
- Let k be least such that $g \not\geq_T 0^{(k+1)}$.
- Infinitely often g must dip below θ^{k+1} .
- *g* can enumerate the set of *x* with $g(x) < \theta^{k+1}(x)$.
- $f \upharpoonright_x$ is unique $\sigma \in T_{k+1}$ with $\sigma(x) \leq g(x)$.

Naive Strategy

- Create sequence of trees $T_k \subset T_{k-1}$ for $1 \le k \le n+2$ with T_{k+1} representing our attempts to meet Σ_{k+1}^0 sets on T_k .
- Prune *T_k* to ensure at most one *σ* ∈ *T_{k+1}* of length *x* − 1 satisfies *σ*(*x*) < θ^{k+1}(*x*)
- Let k be least such that $g \not\geq_T 0^{(k+1)}$.
- Infinitely often g must dip below θ^{k+1} .
- *g* can enumerate the set of *x* with $g(x) < \theta^{k+1}(x)$.
- $f \upharpoonright_x$ is unique $\sigma \in T_{k+1}$ with $\sigma(x) \leq g(x)$.

Naive Strategy

- Create sequence of trees $T_k \subset T_{k-1}$ for $1 \le k \le n+2$ with T_{k+1} representing our attempts to meet Σ_{k+1}^0 sets on T_k .
- Prune *T_k* to ensure at most one *σ* ∈ *T_{k+1}* of length *x* − 1 satisfies *σ*(*x*) < θ^{k+1}(*x*)
- Let k be least such that $g \not\geq_T 0^{(k+1)}$.
- Infinitely often g must dip below θ^{k+1} .
- *g* can enumerate the set of *x* with $g(x) < \theta^{k+1}(x)$.

• $f \upharpoonright_x$ is unique $\sigma \in T_{k+1}$ with $\sigma(x) \leq g(x)$.

<ロ> (四) (四) (三) (三) (三)

Naive Strategy

- Create sequence of trees $T_k \subset T_{k-1}$ for $1 \le k \le n+2$ with T_{k+1} representing our attempts to meet Σ_{k+1}^0 sets on T_k .
- Prune *T_k* to ensure at most one *σ* ∈ *T_{k+1}* of length *x* − 1 satisfies *σ*(*x*) < θ^{k+1}(*x*)
- Let k be least such that $g \not\geq_T 0^{(k+1)}$.
- Infinitely often g must dip below θ^{k+1} .
- *g* can enumerate the set of *x* with $g(x) < \theta^{k+1}(x)$.
- $f \upharpoonright_x$ is unique $\sigma \in T_{k+1}$ with $\sigma(x) \leq g(x)$.

• Need to incorporate multiple strings from T_k in T_{k+1} that aren't above θ^{k+1}

Solution

- τ ∈ T_{k+1} must dip below θ^{k+1} for a Q^(k)-long interval for uniqueness.
- Achieved by 'cancelling' lower priority strings that dip in wrong places.
- If T_{k+1} is a Δ_{k+2}^0 set and g only computes $\underline{0}^{(k)}$

Solution

 $T_{k+1} = \lim_{s \to \infty} T_{k+1}[s]$ Use priority argument to ensure that g(x) is large enough to believe $f \upharpoonright_x \in T_{k+1}$ at true stages.

• Need to incorporate multiple strings from T_k in T_{k+1} that aren't above θ^{k+1}

Solution

- *τ* ∈ *T*_{k+1} must dip below θ^{k+1} for a Q^(k)-long interval for uniqueness.
- Achieved by 'cancelling' lower priority strings that dip in wrong places.
- If T_{k+1} is a Δ^0_{k+2} set and g only computes $\underline{0}^{(k)}$

Solution

 $T_{k+1} = \lim_{s \to \infty} T_{k+1}[s]$ Use priority argument to ensure that g(x) is large enough to believe $f \upharpoonright_{x} \in T_{k+1}$ at true stages.

• Need to incorporate multiple strings from T_k in T_{k+1} that aren't above θ^{k+1}

Solution

- *τ* ∈ *T*_{k+1} must dip below θ^{k+1} for a <u>0</u>^(k)-long interval for uniqueness.
- Achieved by 'cancelling' lower priority strings that dip in wrong places.

(a) T_{k+1} is a Δ_{k+2}^0 set and *g* only computes $\underline{0}^{(k)}$

Solution

 $T_{k+1} = \lim_{s \to \infty} T_{k+1}[s]$ Use priority argument to ensure that g(x) is large enough to believe $f \upharpoonright_{x} \in T_{k+1}$ at true stages.

• Need to incorporate multiple strings from T_k in T_{k+1} that aren't above θ^{k+1}

Solution

- *τ* ∈ *T*_{k+1} must dip below θ^{k+1} for a <u>0</u>^(k)-long interval for uniqueness.
- Achieved by 'cancelling' lower priority strings that dip in wrong places.
- 2 T_{k+1} is a Δ_{k+2}^0 set and g only computes $\underline{0}^{(k)}$

Solution

 $T_{k+1} = \lim_{s \to \infty} T_{k+1}[s]$ Use priority argument to ensure that g(x) is large enough to believe $f \upharpoonright_{x} \in T_{k+1}$ at true stages.

• Need to incorporate multiple strings from T_k in T_{k+1} that aren't above θ^{k+1}

Solution

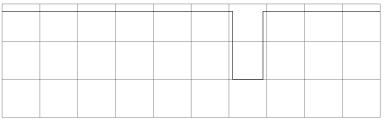
- *τ* ∈ *T*_{k+1} must dip below θ^{k+1} for a <u>0</u>^(k)-long interval for uniqueness.
- Achieved by 'cancelling' lower priority strings that dip in wrong places.

2
$$T_{k+1}$$
 is a Δ^0_{k+2} set and g only computes $\underline{0}^{(k)}$

Solution

 $T_{k+1} = \lim_{s \to \infty} T_{k+1}[s]$ Use priority argument to ensure that g(x) is large enough to believe $f \upharpoonright_{x} \in T_{k+1}$ at true stages.

- $g \succ f$ searches for stage to commit to f using T_1
- Δ_2^0 guess at T_1 changes with stage.
- Approximation to θ^1 increasing to θ^1
- When g(x) < θ¹(x)[s] then T₁[s] gives unique value for f ↾_x.

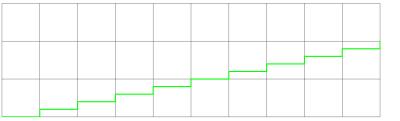


Function *g* that wants to compute *f*

g

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- $g \succ f$ searches for stage to commit to f using T_1
- Δ_2^0 guess at T_1 changes with stage.
- Approximation to θ^1 increasing to θ^1
- When g(x) < θ¹(x)[s] then T₁[s] gives unique value for f ↾_x.



Final fast growing function of degree $\underline{0}'$.

 θ^1

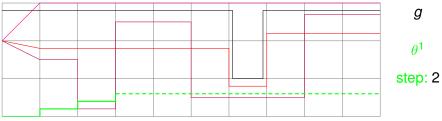
<週 > < 注 > < 注 > □ = =

- $g \succ f$ searches for stage to commit to f using T_1
- Δ_2^0 guess at T_1 changes with stage.
- Approximation to θ^1 increasing to θ^1
- When $g(x) < \theta^1(x)[s]$ then $T_1[s]$ gives unique value for $f \upharpoonright_x$.

Final tree T_1 of possible paths for f

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- $g \succ f$ searches for stage to commit to f using T_1
- Δ_2^0 guess at T_1 changes with stage.
- Approximation to θ^1 increasing to θ^1
- When g(x) < θ¹(x)[s] then T₁[s] gives unique value for f ↾_x.



Membership in T_1 changes during computation steps.

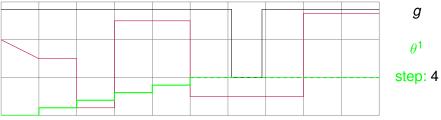
▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

- $g \succ f$ searches for stage to commit to f using T_1
- Δ_2^0 guess at T_1 changes with stage.
- Approximation to θ^1 increasing to θ^1
- When g(x) < θ¹(x)[s] then T₁[s] gives unique value for f ↾_x.

Membership in T_1 changes during computation steps.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

- $g \succ f$ searches for stage to commit to f using T_1
- Δ_2^0 guess at T_1 changes with stage.
- Approximation to θ^1 increasing to θ^1
- When g(x) < θ¹(x)[s] then T₁[s] gives unique value for f ↾_x.



Membership in T_1 changes during computation steps.

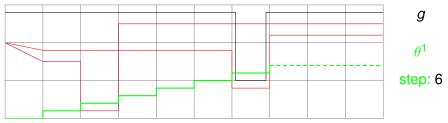
▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ の Q @

- $g \succ f$ searches for stage to commit to f using T_1
- Δ_2^0 guess at T_1 changes with stage.
- Approximation to θ^1 increasing to θ^1
- When g(x) < θ¹(x)[s] then T₁[s] gives unique value for f ↾_x.

Membership in T_1 changes during computation steps.

▲■ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 → のへで

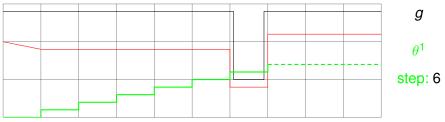
- $g \succ f$ searches for stage to commit to f using T_1
- Δ_2^0 guess at T_1 changes with stage.
- Approximation to θ^1 increasing to θ^1
- When g(x) < θ¹(x)[s] then T₁[s] gives unique value for f ↾_x.



At this step g notices a value at which it is small.

ヨト イヨト ヨー わへで

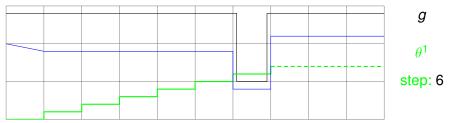
- $g \succ f$ searches for stage to commit to f using T_1
- Δ_2^0 guess at T_1 changes with stage.
- Approximation to θ^1 increasing to θ^1
- When g(x) < θ¹(x)[s] then T₁[s] gives unique value for f ↾_x.



Construction guarantees that no false path is below g

<週 > < 注 > < 注 > □ = =

- $g \succ f$ searches for stage to commit to f using T_1
- Δ_2^0 guess at T_1 changes with stage.
- Approximation to θ^1 increasing to θ^1
- When g(x) < θ¹(x)[s] then T₁[s] gives unique value for f ↾_x.



g can commit to an initial segment of f

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Background Uniform Moduli Nonuniform Moduli

Thanks

In no particular order:

- My advisor Leo Harrington for taking the time to talk about these issues with me.
- Theodore Slaman for introducing me to moduli of computation.
- The conference organizers for setting this all up.

ヘロト 人間 ト ヘヨト ヘヨト

ъ