Properly Extending Properly n-REA Sets

Peter M. Gerdes

New England Recursion and Definability Seminar 2020

Peter M. Gerdes

Proper REA Extension

▶ ◀ 볼 ▶ 볼 ∽ ९ ୯ NERDS 2020 1/21

イロト イボト イヨト イヨト

Properly Extending 2-REA Sets

<ロト < 回 ト < 臣 ト < 臣 ト

Non-Extendable 3-REA Set

DQC

< □ > < □ > < □ > < □ > < □ >

- $A^{[n]}$ is the *n*-th column of *A* and $A^{[\leq n]}$ is the restriction of *A* to the first *n* columns.
- The *i*-th hop is H_i(A) ^{def} = A ⊕ W_i^A. REAin A is a synonym for is a hop of A.
- \emptyset is 0-REA and if A is n-REA then $\mathcal{H}_i(A)$ is n + 1-REA.
- A set is properly (n + 1)-REA just if it is n + 1-REA and not Turing equivalent to any n-REA set.
- We identify *n*-REA sets with *n*-column sets where the *l* + 1-st column is r.e. in the first *l* columns.
- We will denote the n-REA set with index e by X_e.

- $A^{[n]}$ is the *n*-th column of *A* and $A^{[\leq n]}$ is the restriction of *A* to the first *n* columns.
- The *i*-th hop is H_i(A) ^{def} = A ⊕ W_i^A. REAin A is a synonym for is a hop of A.
- \emptyset is 0-REA and if A is n-REA then $\mathcal{H}_i(A)$ is n + 1-REA.
- A set is properly (n + 1)-REA just if it is n + 1-REA and not Turing equivalent to any n-REA set.
- We identify *n*-REA sets with *n*-column sets where the *l* + 1-st column is r.e. in the first *l* columns.
- We will denote the *n*-REA set with index *e* by *X_e*.

- $A^{[n]}$ is the *n*-th column of *A* and $A^{[\leq n]}$ is the restriction of *A* to the first *n* columns.
- The *i*-th hop is H_i(A) ^{def} = A ⊕ W_i^A. REAin A is a synonym for is a hop of A.
- \emptyset is 0-REA and if A is n-REA then $\mathcal{H}_i(A)$ is n + 1-REA.
- A set is properly (n + 1)-REA just if it is n + 1-REA and not Turing equivalent to any n-REA set.
- We identify *n*-REA sets with *n*-column sets where the *l* + 1-st column is r.e. in the first *l* columns.
- We will denote the *n*-REA set with index *e* by *X_e*.

- $A^{[n]}$ is the *n*-th column of *A* and $A^{[\leq n]}$ is the restriction of *A* to the first *n* columns.
- The *i*-th hop is H_i(A) ^{def} = A ⊕ W_i^A. REAin A is a synonym for is a hop of A.
- \emptyset is 0-REA and if A is n-REA then $\mathcal{H}_i(A)$ is n + 1-REA.
- A set is properly (n + 1)-REA just if it is n + 1-REA and not Turing equivalent to any n-REA set.
- We identify *n*-REA sets with *n*-column sets where the *l* + 1-st column is r.e. in the first *l* columns.
- We will denote the *n*-REA set with index *e* by *X_e*.

イロト イボト イヨト イヨ

- $A^{[n]}$ is the *n*-th column of *A* and $A^{[\leq n]}$ is the restriction of *A* to the first *n* columns.
- The *i*-th hop is H_i(A) ^{def} = A ⊕ W_i^A. REAin A is a synonym for is a hop of A.
- \emptyset is 0-REA and if A is n-REA then $\mathcal{H}_i(A)$ is n + 1-REA.
- A set is properly (n + 1)-REA just if it is n + 1-REA and not Turing equivalent to any n-REA set.
- We identify *n*-REA sets with *n*-column sets where the *l* + 1-st column is r.e. in the first *l* columns.
- We will denote the *n*-REA set with index *e* by *X_e*.

- Handwaving details consider an approximation to a 3-REA set A.
- 1 enumerated into 3-rd column dependent on highlighted area.
- Enumeration of 1 cancels 1
- 1 cancels 1 restoring 1
- Can effectively identify *n*-REA sets with r.e. sets of axioms (enumerate y into A^[n] if σ ≺ A^[<n]).

• □ ▶ < □ ▶ < □ ▶ < □ ▶ </p>

- Handwaving details consider an approximation to a 3-REA set A.
- 1 enumerated into 3-rd column dependent on highlighted area.
- Enumeration of 1 cancels 1
- 1 cancels 1 restoring 1
- Can effectively identify *n*-REA sets with r.e. sets of axioms (enumerate y into $A^{[n]}$ if $\sigma \prec A^{[<n]}$).

イロト イボト イヨト イヨト

- Handwaving details consider an approximation to a 3-REA set A.
- 1 enumerated into 3-rd column dependent on highlighted area.
- Enumeration of 1 cancels 1
- 1 cancels 1 restoring 1
- Can effectively identify *n*-REA sets with r.e. sets of axioms (enumerate *y* into A^[n] if σ ≺ A^[<n]).

イロト イボト イヨト イヨト

- Handwaving details consider an approximation to a 3-REA set A.
- 1 enumerated into 3-rd column dependent on highlighted area.
- Enumeration of 1 cancels 1
- 1 cancels 1 restoring 1
- Can effectively identify *n*-REA sets with r.e. sets of axioms (enumerate *y* into A^[n] if σ ≺ A^[<n]).

イロト イヨト イヨト イヨト

- Handwaving details consider an approximation to a 3-REA set A.
- 1 enumerated into 3-rd column dependent on highlighted area.
- Enumeration of 1 cancels 1
- 1 cancels 1 restoring 1
- Can effectively identify *n*-REA sets with r.e. sets of axioms (enumerate y into $A^{[n]}$ if $\sigma \prec A^{[<n]}$).

イロト イボト イヨト イヨト

- Handwaving details consider an approximation to a 3-REA set A.
- 1 enumerated into 3-rd column dependent on highlighted area.
- Enumeration of 1 cancels 1
- 1 cancels 1 restoring 1
- Can effectively identify *n*-REA sets with r.e. sets of axioms (enumerate y into $A^{[n]}$ if $\sigma \prec A^{[<n]}$).

Question

Can every properly n-REA set A be extended to a properly n + 1-REA set $\mathcal{H}_i(A)$?

Prior Results

- Trivially true for n = 0
- The claim is true for n = 1 (Soare and Stob 1982)
- The claim is true for n = 2 (Cholak and Hinman 1994).

Novel Result with Peter Cholak

Claim fails at n = 3.

イロト イボト イヨト イヨト

Question

Can every properly n-REA set A be extended to a properly n + 1-REA set $\mathcal{H}_i(A)$?

Prior Results

- Trivially true for n = 0
- The claim is true for n = 1 (Soare and Stob 1982)
- The claim is true for n = 2 (Cholak and Hinman 1994).

Novel Result with Peter Cholak

Claim fails at n = 3.

イロト イボト イヨト イヨト

Question

Can every properly n-REA set A be extended to a properly n + 1-REA set $\mathcal{H}_i(A)$?

Prior Results

- Trivially true for n = 0
- The claim is true for n = 1 (Soare and Stob 1982)
- The claim is true for n = 2 (Cholak and Hinman 1994).

Novel Result with Peter Cholak

Claim fails at n = 3.

イロト イボト イヨト イヨ

Properly Extending 2-REA Sets

Non-Extendable 3-REA Set

590

< □ > < □ > < □ > < □ > < □ >

Proposition (Cholak and Hinman 1994)

Every properly 2-REA can be extended to a properly 3-REA set.

Build A r.e. in proper 2-REA C meeting (where X_e is 2-REA):

Requirements

$$\mathscr{Q}_{j,e}: \left(\phi_j^{C \oplus A} \neq X_e \lor \phi_j^{X_e} \neq C \oplus A\right)$$

- We think of $C \oplus A$ as a 3 column set.
- Can find j so ϕ_j^Z switches computation based on $Z = X_e$ or $Z = C \oplus A$.

Let's start easy and suppose we control C. How would we build $Z = C \oplus A$ to be properly 3-REA set.

イロト イヨト イヨト

Proposition (Cholak and Hinman 1994)

Every properly 2-REA can be extended to a properly 3-REA set.

Build A r.e. in proper 2-REA C meeting (where X_e is 2-REA):

Requirements

$$\mathscr{Q}_{j,e}: \left(\phi_j^{C \oplus A} \neq X_e \lor \phi_j^{X_e} \neq C \oplus A\right)$$

- We think of $C \oplus A$ as a 3 column set.
- Can find j so ϕ_j^Z switches computation based on $Z = X_e$ or $Z = C \oplus A$.

Let's start easy and suppose we control C. How would we build $Z = C \oplus A$ to be properly 3-REA set.

イロト 不得 トイラト イラト 二日

Proposition (Cholak and Hinman 1994)

Every properly 2-REA can be extended to a properly 3-REA set.

Build A r.e. in proper 2-REA C meeting (where X_e is 2-REA):

Requirements

$$\mathscr{Q}_{j,e}: \left(\phi_j^{C \oplus A} \neq X_e \lor \phi_j^{X_e} \neq C \oplus A\right)$$

- We think of $C \oplus A$ as a 3 column set.
- Can find j so ϕ_j^Z switches computation based on $Z = X_e$ or $Z = C \oplus A$.

Let's start easy and suppose we control C. How would we build $Z = C \oplus A$ to be properly 3-REA set.

イロト イポト イヨト イヨト 二日

Meet one requirement for Z: $\phi_j^Z \neq X_e \lor \phi_j^{X_e} \neq Z$

- Hold $(\overline{Z_3})$ out of Z (red for disagree).
- Await agreement. **Gray** X_e area use closed.
- Put (Z_3) in Z. Await agreement.
- Some x_2 must enter X_e .
- Extend agreement. x₂ use included for use closure.
- Cancel (z_3) by enumerating z_2 .
- Restores computation with $X_e(x_2) = 0$. Await Agreement.
- Some x_1 must cancel x_2 to agree.
- Cancel z_2 with z_1 . Restoring comp: $X_e(x_1) = 0$. **Permanent Disagreement**.

Meet one requirement for Z: $\phi_j^Z \neq X_e \lor \phi_j^{X_e} \neq Z$

- Hold Z_3 out of Z (red for disagree).
- Await agreement. Gray X_e area use closed.
- Put Z_3 in Z. Await agreement.
- Some x_2 must enter X_e .
- Extend agreement. x₂ use included for use closure.
- Cancel (z_3) by enumerating z_2 .
- Restores computation with $X_e(x_2) = 0$. Await Agreement.
- Some x_1 must cancel x_2 to agree.
- Cancel z_2 with z_1 . Restoring comp: $X_e(x_1) = 0$. **Permanent Disagreement**.

イロト イポト イヨト イヨト 二日

Meet one requirement for Z: $\phi_j^Z \neq X_e \lor \phi_j^{X_e} \neq Z$

- Hold Z_3 out of Z (red for disagree).
- Await agreement. Gray X_e area use closed.
- Put Z_3 in Z. Await agreement.
- Some x_2 must enter X_e .
- Extend agreement. x₂ use included for use closure.
- Cancel (z_3) by enumerating z_2 .
- Restores computation with $X_e(x_2) = 0$. Await Agreement.
- Some x_1 must cancel x_2 to agree.
- Cancel z_2 with z_1 . Restoring comp: $X_e(x_1) = 0$. **Permanent Disagreement**.

Meet one requirement for Z: $\phi_j^Z \neq X_e \lor \phi_j^{X_e} \neq Z$

- Hold \mathbb{Z}_3 out of Z (red for disagree).
- Await agreement. Gray X_e area use closed.
- Put Z_3 in Z. Await agreement.
- Some x_2 must enter X_e .
- Extend agreement. x₂ use included for use closure.
- Cancel (z_3) by enumerating z_2 .
- Restores computation with $X_e(x_2) = 0$. Await Agreement.
- Some x_1 must cancel x_2 to agree.
- Cancel z_2 with z_1 . Restoring comp: $X_e(x_1) = 0$. **Permanent Disagreement**.

Meet one requirement for Z: $\phi_j^Z \neq X_e \lor \phi_j^{X_e} \neq Z$

- Hold Z_3 out of Z (red for disagree).
- Await agreement. Gray X_e area use closed.
- Put Z_3 in Z. Await agreement.
- Some x_2 must enter X_e .
- Extend agreement. x₂ use included for use closure.
- Cancel (z_3) by enumerating z_2 .
- Restores computation with $X_e(x_2) = 0$. Await Agreement.
- Some x_1 must cancel x_2 to agree.
- Cancel z_2 with z_1 . Restoring comp: $X_e(x_1) = 0$. **Permanent Disagreement**.

Meet one requirement for Z: $\phi_j^Z \neq X_e \lor \phi_j^{X_e} \neq Z$

- Hold \mathbb{Z}_3 out of Z (red for disagree).
- Await agreement. Gray X_e area use closed.
- Put Z_3 in Z. Await agreement.
- Some x_2 must enter X_e .
- Extend agreement. x₂ use included for use closure.
- Cancel $\overline{z_3}$ by enumerating z_2 .
- Restores computation with $X_e(x_2) = 0$. Await Agreement.
- Some x_1 must cancel x_2 to agree.
- Cancel z_2 with z_1 . Restoring comp: $X_e(x_1) = 0$. **Permanent Disagreement**.

Meet one requirement for Z: $\phi_j^Z \neq X_e \lor \phi_j^{X_e} \neq Z$

- Hold Z_3 out of Z (red for disagree).
- Await agreement. Gray X_e area use closed.
- Put Z_3 in Z. Await agreement.
- Some x_2 must enter X_e .
- Extend agreement. x₂ use included for use closure.
- Cancel $\overline{(z_3)}$ by enumerating z_2 .
- Restores computation with $X_e(x_2) = 0$. Await Agreement.
- Some x_1 must cancel x_2 to agree.
- Cancel z_2 with z_1 . Restoring comp: $X_e(x_1) = 0$. Permanent **Disagreement**.

Meet one requirement for Z: $\phi_j^Z \neq X_e \lor \phi_j^{X_e} \neq Z$

- Hold Z_3 out of Z (red for disagree).
- Await agreement. Gray X_e area use closed.
- Put $(\overline{Z_3})$ in Z. Await agreement.
- Some x_2 must enter X_e .
- Extend agreement. x₂ use included for use closure.
- Cancel $\overline{(z_3)}$ by enumerating z_2 .
- Restores computation with $X_e(x_2) = 0$. Await Agreement.
- Some x_1 must cancel x_2 to agree.
- Cancel z_2 with z_1 . Restoring comp: $X_e(x_1) = 0$. Permanent **Disagreement**.

Meet one requirement for Z: $\phi_j^Z \neq X_e \lor \phi_j^{X_e} \neq Z$

- Hold Z_3 out of Z (red for disagree).
- Await agreement. Gray X_e area use closed.
- Put Z_3 in Z. Await agreement.
- Some x_2 must enter X_e .
- Extend agreement. x₂ use included for use closure.
- Cancel $\overline{(z_3)}$ by enumerating z_2 .
- Restores computation with $X_e(x_2) = 0$. Await Agreement.
- Some x_1 must cancel x_2 to agree.
- Cancel z_2 with z_1 . Restoring comp: $X_e(x_1) = 0$. Permanent **Disagreement**.

Try building A so $C \oplus A$ performs above construction.

- Problem: C might not supply z_2 .
- Assume: build $z_3^n, n \in \omega$ so all late $(C^{[1]} \text{ comp modulus})$ enums into $C^{[2]}$ work as some z_2^n .
- WIN If X_e doesn't cancel (in r.e. proof couldn't)
- Undoing z_2^n enum (restoring prior agreement) gives **WIN**.
- Otherwise $C^{[1]} \oplus X_e^{[1]}$ recovers C since $C^{[2]}$ enum ensures $X_e^{[1]}$ change **WIN**
 - $\leq_{\mathsf{T}}: \mathscr{Q}_{j,e}$ acts infinitely so $C \equiv_{\mathsf{T}} C \oplus A \equiv_{\mathsf{T}} X_e \geq_{\mathsf{T}} X_e^{[1]}$
 - \geq_{T} : Every late (not before $C^{[1]}$ modulus) entry into $C^{[2]}$ serves as some z_2^n causing change to $X_e^{[1]}$ below bound set when z_3^n enumerated.

Sac

Try building A so $C \oplus A$ performs above construction.

- Problem: C might not supply z_2 .
- Assume: build $z_3^n, n \in \omega$ so all late $(C^{[1]} \text{ comp modulus})$ enums into $C^{[2]}$ work as some z_2^n .
- WIN If X_e doesn't cancel (in r.e. proof couldn't)
- Undoing z_2^n enum (restoring prior agreement) gives **WIN**.
- Otherwise $C^{[1]} \oplus X_e^{[1]}$ recovers C since $C^{[2]}$ enum ensures $X_e^{[1]}$ change **WIN**
 - $\leq_{\mathsf{T}}: \mathscr{Q}_{j,e}$ acts infinitely so $C \equiv_{\mathsf{T}} C \oplus A \equiv_{\mathsf{T}} X_e \geq_{\mathsf{T}} X_e^{[1]}$
 - \geq_{T} : Every late (not before $C^{[1]}$ modulus) entry into $C^{[2]}$ serves as some z_2^n causing change to $X_e^{[1]}$ below bound set when z_3^n enumerated.

Sac

Try building A so $C \oplus A$ performs above construction.

- Problem: C might not supply z_2 .
- Assume: build $z_3^n, n \in \omega$ so all late $(C^{[1]} \text{ comp modulus})$ enums into $C^{[2]}$ work as some z_2^n .
- WIN If X_e doesn't cancel (in r.e. proof couldn't)
- Undoing z_2^n enum (restoring prior agreement) gives **WIN**.
- Otherwise $C^{[1]} \oplus X_e^{[1]}$ recovers C since $C^{[2]}$ enum ensures $X_e^{[1]}$ change **WIN**
 - $\leq_{\mathsf{T}}: \mathscr{Q}_{j,e}$ acts infinitely so $C \equiv_{\mathsf{T}} C \oplus A \equiv_{\mathsf{T}} X_e \geq_{\mathsf{T}} X_e^{[1]}$
 - \geq_{T} : Every late (not before $C^{[1]}$ modulus) entry into $C^{[2]}$ serves as some z_2^n causing change to $X_e^{[1]}$ below bound set when z_3^n enumerated.

Sac

Try building A so $C \oplus A$ performs above construction.

- Problem: C might not supply z_2 .
- Assume: build z_3^n , $n \in \omega$ so all late $(C^{[1]} \text{ comp modulus})$ enums into $C^{[2]}$ work as some z_2^n .
- WIN If X_e doesn't cancel (in r.e. proof couldn't)
- Undoing z_2^n enum (restoring prior agreement) gives **WIN**.
- Otherwise $C^{[1]} \oplus X_e^{[1]}$ recovers C since $C^{[2]}$ enum ensures $X_e^{[1]}$ change **WIN**
 - $\leq_{\mathsf{T}}: \mathscr{Q}_{j,e}$ acts infinitely so $C \equiv_{\mathsf{T}} C \oplus A \equiv_{\mathsf{T}} X_e \geq_{\mathsf{T}} X_e^{[1]}$
 - \geq_{T} : Every late (not before $C^{[1]}$ modulus) entry into $C^{[2]}$ serves as some z_2^n causing change to $X_e^{[1]}$ below bound set when z_3^n enumerated.

Sac

Try building A so $C \oplus A$ performs above construction.

- Problem: C might not supply z_2 .
- Assume: build $z_3^n, n \in \omega$ so all late $(C^{[1]} \text{ comp modulus})$ enums into $C^{[2]}$ work as some z_2^n .
- WIN If X_e doesn't cancel (in r.e. proof couldn't)
- Undoing z_2^n enum (restoring prior agreement) gives **WIN**.
- Otherwise $C^{[1]} \oplus X_e^{[1]}$ recovers C since $C^{[2]}$ enum ensures $X_e^{[1]}$ change **WIN**
 - $\leq_{\mathsf{T}}: \mathscr{Q}_{j,e}$ acts infinitely so $C \equiv_{\mathsf{T}} C \oplus A \equiv_{\mathsf{T}} X_e \geq_{\mathsf{T}} X_e^{[1]}$
 - \geq_{T} : Every late (not before $C^{[1]}$ modulus) entry into $C^{[2]}$ serves as some z_2^n causing change to $X_e^{[1]}$ below bound set when z_3^n enumerated.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Try building A so $C \oplus A$ performs above construction.

- Problem: C might not supply z_2 .
- Assume: build $z_3^n, n \in \omega$ so all late $(C^{[1]} \text{ comp modulus})$ enums into $C^{[2]}$ work as some z_2^n .
- WIN If X_e doesn't cancel (in r.e. proof couldn't)
- Undoing z_2^n enum (restoring prior agreement) gives **WIN**.
- Otherwise $C^{[1]} \oplus X_e^{[1]}$ recovers C since $C^{[2]}$ enum ensures $X_e^{[1]}$ change **WIN**
 - $\leq_{\mathsf{T}}: \mathscr{Q}_{j,e}$ acts infinitely so $C \equiv_{\mathsf{T}} C \oplus A \equiv_{\mathsf{T}} X_e \geq_{\mathsf{T}} X_e^{[1]}$
 - \geq_{T} : Every late (not before $C^{[1]}$ modulus) entry into $C^{[2]}$ serves as some z_2^n causing change to $X_e^{[1]}$ below bound set when z_3^n enumerated.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Extending Properly 2-REA

Try building A so $C \oplus A$ performs above construction.

- Problem: C might not supply z_2 .
- Assume: build $z_3^n, n \in \omega$ so all late $(C^{[1]} \text{ comp modulus})$ enums into $C^{[2]}$ work as some z_2^n .
- WIN If X_e doesn't cancel (in r.e. proof couldn't)
- Undoing z_2^n enum (restoring prior agreement) gives **WIN**.
- Otherwise $C^{[1]} \oplus X_e^{[1]}$ recovers C since $C^{[2]}$ enum ensures $X_e^{[1]}$ change **WIN**
 - $\leq_{\mathsf{T}}: \mathscr{Q}_{j,e}$ acts infinitely so $C \equiv_{\mathsf{T}} C \oplus A \equiv_{\mathsf{T}} X_e \geq_{\mathsf{T}} X_e^{[1]}$
 - \geq_{T} : Every late (not before $C^{[1]}$ modulus) entry into $C^{[2]}$ serves as some z_2^n causing change to $X_e^{[1]}$ below bound set when z_3^n enumerated.

Extending Properly 2-REA

Try building A so $C \oplus A$ performs above construction.

- Problem: C might not supply z_2 .
- Assume: build $z_3^n, n \in \omega$ so all late $(C^{[1]} \text{ comp modulus})$ enums into $C^{[2]}$ work as some z_2^n .
- WIN If X_e doesn't cancel (in r.e. proof couldn't)
- Undoing z_2^n enum (restoring prior agreement) gives **WIN**.
- Otherwise $C^{[1]} \oplus X_e^{[1]}$ recovers C since $C^{[2]}$ enum ensures $X_e^{[1]}$ change **WIN**
 - $\leq_{\mathsf{T}}: \mathscr{Q}_{j,e}$ acts infinitely so $C \equiv_{\mathsf{T}} C \oplus A \equiv_{\mathsf{T}} X_e \geq_{\mathsf{T}} X_e^{[1]}$
 - \geq_{T} : Every late (not before $C^{[1]}$ modulus) entry into $C^{[2]}$ serves as some z_2^n causing change to $X_e^{[1]}$ below bound set when z_3^n enumerated.

Extending Properly 2-REA

Try building A so $C \oplus A$ performs above construction.

- Problem: C might not supply z_2 .
- Assume: build $z_3^n, n \in \omega$ so all late $(C^{[1]} \text{ comp modulus})$ enums into $C^{[2]}$ work as some z_2^n .
- WIN If X_e doesn't cancel (in r.e. proof couldn't)
- Undoing z_2^n enum (restoring prior agreement) gives **WIN**.
- Otherwise $C^{[1]} \oplus X_e^{[1]}$ recovers C since $C^{[2]}$ enum ensures $X_e^{[1]}$ change **WIN**
 - $\leq_{\mathsf{T}}: \mathscr{Q}_{j,e}$ acts infinitely so $C \equiv_{\mathsf{T}} C \oplus A \equiv_{\mathsf{T}} X_e \geq_{\mathsf{T}} X_e^{[1]}$
 - \geq_{T} : Every late (not before $C^{[1]}$ modulus) entry into $C^{[2]}$ serves as some z_2^n causing change to $X_e^{[1]}$ below bound set when z_3^n enumerated.

No Uniform Proper Extendability

If z_3^n choice (Assume) existed result would be uniform. It's not!

Proposition (Cholak and Hinman 1994)

For all n > 0, total computable p there is a properly n-REA set X_e such that $\mathcal{H}_{p(e)}(X_e)$ is not properly n-REA

Proof.

• Build $X_e = \mathcal{H}_e(\mathbb{O}^{(n-1)})$ to frustrate p. Assume we know j = p(e).

• Let h (Hop inversion Jockusch and Shore 1983) satisfy $\mathcal{H}_j(X_{h(j)}) \equiv_{\mathsf{T}} \mathbb{O}^{(n)}$.

- By fixed point let j s.t. $W_j^Z = W_{p(h(j))}^Z$ and e = h(j).
- Hence $\mathcal{H}_{p(e)}\left(X_{e}\right) = \mathcal{H}_{p(h(j))}\left(X_{h(j)}\right) = \mathcal{H}_{j}\left(X_{h(j)}\right) \equiv_{\mathsf{T}} \mathbb{O}^{(n)}$

イロト 不得下 イヨト イヨト 二日

Idea

Build A_0, A_1 so that one of $C \oplus A_i$ is properly 3-REA.

Requirements

$$\mathscr{Q}_{e_{0},e_{1},j}: \ (\exists k) \Big(\phi_{j}^{C \oplus A_{k}} \neq X_{e_{k}} \lor \phi_{j}^{X_{e_{k}}} \neq C \oplus A_{k} \Big)$$

Idea

Chose $z_3^{n,k}$ for A_k and interleave so that:

- Sequence infinite iff $\neg \mathcal{Q}_{e_0,e_1,j}$. (Only stop on disagree)
- 2 Any late enum into $C^{[2]}$ acts as $z_2^{m,k'}$, i.e., cancels $z_3^{m,k'}$.
- **3** $C_s^{[1]} \oplus X_{e,s}^{[1]}$ bounds $z_3^{n,k}$.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 - のへ⊙

Idea

Build A_0, A_1 so that one of $C \oplus A_i$ is properly 3-REA.

Requirements

$$\mathscr{Q}_{\mathbf{e}_{0},\mathbf{e}_{1},j}: \ (\exists k) \Big(\phi_{j}^{C \oplus A_{k}} \neq X_{\mathbf{e}_{k}} \lor \phi_{j}^{X_{\mathbf{e}_{k}}} \neq C \oplus A_{k} \Big)$$

Idea

Chose $z_3^{n,k}$ for A_k and interleave so that:

- **1** Sequence infinite iff $\neg \mathcal{Q}_{e_0,e_1,j}$. (Only stop on disagree)
- 2 Any late enum into $C^{[2]}$ acts as $z_2^{m,k'}$, i.e., cancels $z_3^{m,k'}$.
- **3** $C_s^{[1]} \oplus X_{e,s}^{[1]}$ bounds $z_3^{n,k}$.

Idea

Build A_0, A_1 so that one of $C \oplus A_i$ is properly 3-REA.

Requirements

$$\mathscr{Q}_{\mathbf{e}_{0},\mathbf{e}_{1},j}:\ (\exists k)\Big(\phi_{j}^{C\oplus A_{k}}\neq X_{\mathbf{e}_{k}}\vee\phi_{j}^{X_{\mathbf{e}_{k}}}\neq C\oplus A_{k}\Big)$$

Idea

Chose $z_3^{n,k}$ for A_k and interleave so that:

• Sequence infinite iff $\neg \mathscr{Q}_{e_0,e_1,j}$. (Only stop on disagree)

2 Any late enum into
$$C^{[2]}$$
 acts as $z_2^{m,k'}$, i.e., cancels $z_3^{m,k'}$

$$C_s^{[1]} \oplus X_{e,s}^{[1]} \text{ bounds } z_3^{n,k}.$$

• Except for finite initial segment any enumeration into $C^{[2]}$ lands in an

<ロト < 回 ト < 臣 ト < 臣 ト

DQC

• Except for finite initial segment any enumeration into $C^{[2]}$ lands in an

イロト イボト イヨト イヨ

DQC

• Except for finite initial segment any enumeration into $C^{[2]}$ lands in an area where it can remove some $z_3^{n,k}$ and restore the prior computation.

Image: A math a math

• Except for finite initial segment any enumeration into $C^{[2]}$ lands in an area where it can remove some $z_3^{n,k}$ and restore the prior computation.

Image: A math a math

• Except for finite initial segment any enumeration into $C^{[2]}$ lands in an area where it can remove some $z_3^{n,k}$ and restore the prior computation.

Image: A math a math

• Except for finite initial segment any enumeration into $C^{[2]}$ lands in an area where it can remove some $z_3^{n,k}$ and restore the prior computation.

Image: A math a math

• Except for finite initial segment any enumeration into $C^{[2]}$ lands in an area where it can remove some $z_3^{n,k}$ and restore the prior computation.

(日) (同) (三)

• Except for finite initial segment any enumeration into $C^{[2]}$ lands in an area where it can remove some $z_3^{n,k}$ and restore the prior computation.

(日) (同) (三)

• Except for finite initial segment any enumeration into $C^{[2]}$ lands in an area where it can remove some $z_3^{n,k}$ and restore the prior computation.

590

◆□▶ ◆□▶ ◆三▶ ◆三▶

Theorem (Novel Result with Peter Cholak)

There is a properly 3-REA set A which can't be extended to a properly 4-REA set $\mathcal{H}_i(A)$.

Build A, Y_i 3-REA Γ_i , Θ to satisfy: (where X_e is 2-REA)

Requirements

$$\mathcal{P}_{i}: \quad \Gamma_{i}\left(\mathcal{H}_{i}\left(A\right)\right) = Y_{i} \land \Theta\left(Y_{i}\right) = W_{i}^{A}$$
$$\mathcal{R}_{j,e}: \quad \Phi_{j}(A) \neq X_{e} \lor \Phi_{j}(X_{e}) \neq A$$

• \mathscr{P}_i ensures that $A \oplus Y_i \stackrel{\text{def}}{=} \bigoplus_{k \leq 3} A^{[k]} \oplus Y_i^{[k]}$ is 3-REA set equivalent to $\mathcal{H}_i(A)$

• $\mathcal{R}_{j,e}$ met like proper 3-REA construction (but rename z_1, z_2, z_3 to a, b, c).

Theorem (Novel Result with Peter Cholak)

There is a properly 3-REA set A which can't be extended to a properly 4-REA set $\mathcal{H}_i(A)$.

Build A, Y_i 3-REA Γ_i , Θ to satisfy: (where X_e is 2-REA)

Requirements

$$\mathcal{P}_{i}: \quad \Gamma_{i}\left(\mathcal{H}_{i}\left(A\right)\right) = Y_{i} \land \Theta\left(Y_{i}\right) = W_{i}^{A}$$
$$\mathcal{R}_{j,e}: \quad \Phi_{j}(A) \neq X_{e} \lor \Phi_{j}(X_{e}) \neq A$$

• \mathscr{P}_i ensures that $A \oplus Y_i \stackrel{\text{def}}{=} \bigoplus_{k \leq 3} A^{[k]} \oplus Y_i^{[k]}$ is 3-REA set equivalent to $\mathcal{H}_i(A)$

• $\mathcal{R}_{j,e}$ met like proper 3-REA construction (but rename z_1, z_2, z_3 to a, b, c).

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 - のへ⊙

Theorem (Novel Result with Peter Cholak)

There is a properly 3-REA set A which can't be extended to a properly 4-REA set $\mathcal{H}_i(A)$.

Build A, Y_i 3-REA Γ_i , Θ to satisfy: (where X_e is 2-REA)

Requirements

$$\mathcal{P}_{i}: \quad \Gamma_{i}\left(\mathcal{H}_{i}\left(A\right)\right) = Y_{i} \land \Theta\left(Y_{i}\right) = W_{i}^{A}$$
$$\mathcal{R}_{j,e}: \quad \Phi_{j}(A) \neq X_{e} \lor \Phi_{j}(X_{e}) \neq A$$

- \mathscr{P}_i ensures that $A \overline{\oplus} Y_i \stackrel{\text{def}}{=} \bigoplus_{k \leq 3} A^{[k]} \oplus Y_i^{[k]}$ is 3-REA set equivalent to $\mathcal{H}_i(A)$
- $\mathcal{R}_{j,e}$ met like proper 3-REA construction (but rename z_1, z_2, z_3 to a, b, c).

Construction Framework

- Use finite injury method to build A, Y_i as limit of approximations.
- We maintain agreement at all stages and choose I_s large at end of s.
- Θ must allow enum into $Y_i^{[3]}$ (above x) to toggle $\Theta(Y_i; x)$, e.g., $\Theta_s(Y_i; x)$ is size of $Y_{i,s}^{[3][x]} \upharpoonright [I_s]$.
- Use axioms $\Gamma_i(A_s \upharpoonright [I_s]) = Y_{i,s} \upharpoonright [I_s]$ to define Γ_i . Note: infinitely often we restrain A_s on large initial segment.
- $\mathscr{R}_{j,e}$ only needs to avoid reinitializing Γ_i for $i < \langle \langle j, e \rangle \rangle$.

Fact

Entry into A, W_i^A allows redefinition of Y_i above x. Only danger is x removes smaller elements from W_i^A restoring prior Γ_i commitment.

イロト 不得 トイラト イラト 二字 -

Construction Framework

- Use finite injury method to build A, Y_i as limit of approximations.
- We maintain agreement at all stages and choose I_s large at end of s.
- Θ must allow enum into $Y_i^{[3]}$ (above x) to toggle $\Theta(Y_i; x)$, e.g., $\Theta_s(Y_i; x)$ is size of $Y_{i,s}^{[3][x]} \upharpoonright [I_s]$.
- Use axioms $\Gamma_i(A_s \upharpoonright [I_s]) = Y_{i,s} \upharpoonright [I_s]$ to define Γ_i . Note: infinitely often we restrain A_s on large initial segment.
- $\mathscr{R}_{j,e}$ only needs to avoid reinitializing Γ_i for $i < \langle \langle j, e \rangle \rangle$.

Fact

Entry into A, W_i^A allows redefinition of Y_i above x. Only danger is x removes smaller elements from W_i^A restoring prior Γ_i commitment.

Change Indifference For $\mathcal{R}_{i,e}$

- Enemy (W_i^A) wants to walk changes 'up' columns of Y_i till can't match
- Enemy can use interleaving trick so if c enters $A^{[3]}$ it restores some prior computation (therefore forcing $Y_i^{[2]}$ change).
- Want to avoid $Y_i^{[\leq 2]}$ change when enumerating b into $A^{[3]}$

Idea

Try (in order) many options c_n for c. We have option to cancel c_k and 'time travel' to point in time right before enumerating c_k . Enemy will run out of different ways to enumerate into W_i^A , $i < \langle \langle j, e \rangle \rangle$.

- We will assume that we enumerate $c_k = c_0 + k$ (ish) into $A^{[3]}$ at stages s_k where agreement with X_e increases.
- Want to time travel to immediatly before c_k enumerated without changing $Y_i^{[\leq 2]}$.

Peter M. Gerdes

Change Indifference For $\mathcal{R}_{i,e}$

- Enemy (W_i^A) wants to walk changes 'up' columns of Y_i till can't match
- Enemy can use interleaving trick so if c enters $A^{[3]}$ it restores some prior computation (therefore forcing $Y_i^{[2]}$ change).
- Want to avoid $Y_i^{[\leq 2]}$ change when enumerating b into $A^{[3]}$

Idea

Try (in order) many options c_n for c. We have option to cancel c_k and 'time travel' to point in time right before enumerating c_k . Enemy will run out of different ways to enumerate into W_i^A , $i < \langle \langle j, e \rangle \rangle$.

- We will assume that we enumerate $c_k = c_0 + k$ (ish) into $A^{[3]}$ at stages s_k where agreement with X_e increases.
- Want to time travel to immediatly before c_k enumerated without changing $Y_i^{[\leq 2]}$.

Peter M. Gerdes

Change Indifference For $\mathcal{R}_{i,e}$

- Enemy (W_i^A) wants to walk changes 'up' columns of Y_i till can't match
- Enemy can use interleaving trick so if c enters $A^{[3]}$ it restores some prior computation (therefore forcing $Y_i^{[2]}$ change).
- Want to avoid $Y_i^{[\leq 2]}$ change when enumerating b into $A^{[3]}$

Idea

Try (in order) many options c_n for c. We have option to cancel c_k and 'time travel' to point in time right before enumerating c_k . Enemy will run out of different ways to enumerate into W_i^A , $i < \langle \langle j, e \rangle \rangle$.

- We will assume that we enumerate $c_k = c_0 + k$ (ish) into $A^{[3]}$ at stages s_k where agreement with X_e increases.
- Want to time travel to immediatly before c_k enumerated without changing $Y_i^{[\leq 2]}$.

Functionals defined on some initial use.

- At $s_{-1} \mathcal{R}_{i,e}$ chooses \mathfrak{C}_0 large in $A^{[3]}$.
- At $s_0 \xrightarrow{(C_0)}$ enters $A^{[3]}$ resetting W_i^A
- At $s_1 (c_1)$ enters again resetting W_i^A to s_{-1} state.
- We cancel 1 by enumerating 1 AGREEMENT
- Enum b_1 canceling $\widehat{c_1}$ but not $Y_i^{[\leq 2]}$. Enum a_1 VICTORY

イロト イポト イヨト イヨト 二日

Ignore all elements but one (call q) entering/leaving W_i^A for now.

- At $s_{-1} \mathcal{R}_{j,e}$ chooses \mathcal{C}_0 large in $A^{[3]}$.
- At $s_0 \otimes C_0$ enters $A^{[3]}$ resetting W_i^A
- At $s_1 \oplus c_1$ enters again resetting W_i^A to s_{-1} state.
- We cancel 1 by enumerating 1 AGREEMENT
- Enum b_1 canceling $\widehat{c_1}$ but not $Y_i^{[\leq 2]}$. Enum a_1 VICTORY

イロト 不得 トイヨト イヨト 二日

Elements enter W_i^A while waiting to see agreement with X_e .

- At $s_{-1} \mathcal{R}_{j,e}$ chooses \mathcal{C}_0 large in $A^{[3]}$.
- At $s_0 (c_0)$ enters $A^{[3]}$ resetting W_i^A
- At $s_1 \oplus c_1$ enters again resetting W_i^A to s_{-1} state.
- We cancel 1 by enumerating 1 AGREEMENT
- Enum b_1 canceling $\widehat{c_1}$ but not $Y_i^{[\leq 2]}$. Enum a_1 VICTORY

< ロ ト < 同 ト < 三 ト < 三 ト

Must cancel enumerations into Y_i to agree with prior computation.

- At $s_{-1} \mathcal{R}_{i,e}$ chooses $\overline{c_0}$ large in $A^{[3]}$.
- At $s_0 \xrightarrow{(C_0)}$ enters $A^{[3]}$ resetting W_i^A
- At $s_1 \oplus c_1$ enters again resetting W_i^A to s_{-1} state.
- We cancel 1 by enumerating 1 AGREEMENT
- Enum b_1 canceling $\widehat{c_1}$ but not $Y_i^{[\leq 2]}$. Enum a_1 VICTORY

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 - のへ⊙

Interlude: What if we tried to use c_0 as c by enum b_0 into $A^{[2]}$

- At $s_{-1} \mathcal{R}_{i,e}$ chooses \mathcal{C}_{0} large in $A^{[3]}$.
- At $s_0 (c_0)$ enters $A^{[3]}$ resetting W_i^A
- At $s_1 \oplus c_1$ enters again resetting W_i^A to s_{-1} state.
- We cancel 1 by enumerating 1 AGREEMENT
- Enum b_1 canceling $\widehat{c_1}$ but not $Y_i^{[\leq 2]}$. Enum a_1 VICTORY

イロト イポト イヨト イヨト 二日

500

Interlude: q returned to W_i^A , Y_i . Cancelling b_0 would break functionals.

- At $s_{-1} \mathcal{R}_{i,e}$ chooses \mathcal{C}_{0} large in $A^{[3]}$.
- At $s_0 \xrightarrow{(C_0)}$ enters $A^{[3]}$ resetting W_i^A
- At $s_1 \oplus c_1$ enters again resetting W_i^A to s_{-1} state.
- We cancel 1 by enumerating 1 AGREEMENT
- Enum b_1 canceling $\widehat{c_1}$ but not $Y_i^{[\leq 2]}$. Enum a_1 VICTORY

< ロ ト < 同 ト < 三 ト < 三 ト

Instead we wait for X_e agree through $\overline{C_1}$

- At $s_{-1} \mathcal{R}_{i,e}$ chooses $\overline{c_0}$ large in $A^{[3]}$.
- At $s_0 \xrightarrow{(C_0)}$ enters $A^{[3]}$ resetting W_i^A
- At $s_1 \oplus c_1$ enters again resetting W_i^A to s_{-1} state.
- We cancel 1 by enumerating 1 AGREEMENT
- Enum b_1 canceling $\widehat{c_1}$ but not $Y_i^{[\leq 2]}$. Enum a_1 VICTORY

イロト 不得 トイヨト イヨト 二日

During wait q enters W_0^A changing Y_0 .

- At $s_{-1} \mathcal{R}_{j,e}$ chooses \mathcal{C}_0 large in $A^{[3]}$.
- At $s_0 \xrightarrow{(C_0)}$ enters $A^{[3]}$ resetting W_i^A
- At $s_1 \oplus c_1$ enters again resetting W_i^A to s_{-1} state.
- We cancel 1 by enumerating 1 AGREEMENT
- Enum b_1 canceling $\widehat{c_1}$ but not $Y_i^{[\leq 2]}$. Enum a_1 VICTORY

< ロ ト < 同 ト < 三 ト < 三 ト

 c_1 cancels q from W_0^A changing Y_0 not Y_1

- At $s_{-1} \mathcal{R}_{j,e}$ chooses \mathcal{C}_0 large in $A^{[3]}$.
- At $s_0 \xrightarrow{(C_0)}$ enters $A^{[3]}$ resetting W_i^A
- At $s_1 (c_1)$ enters again resetting W_i^A to s_{-1} state.

• We cancel 1 by enumerating 1 AGREEMENT

• Enum b_1 canceling $\widehat{c_1}$ but not $Y_i^{[\leq 2]}$. Enum a_1 VICTORY

イロト イ団ト イヨト イヨト 二足

q enum into W_0^A . Restore old state of Y_0 don't re-enum code for q.

- At $s_{-1} \mathcal{R}_{i,e}$ chooses $\overline{c_0}$ large in $A^{[3]}$.
- At $s_0 \xrightarrow{(C_0)}$ enters $A^{[3]}$ resetting W_i^A
- At $s_1 (c_1)$ enters again resetting W_i^A to s_{-1} state.
- We cancel 1 by enumerating 1 AGREEMENT
- Enum b_1 canceling $\widehat{c_1}$ but not $Y_i^{[\leq 2]}$. Enum a_1 VICTORY

< ロ ト < 同 ト < 三 ト < 三 ト

Only enum into $Y_i^{[3]}$ untill $\mathcal{R}_{i,e}$ expansionary.

- At $s_{-1} \mathcal{R}_{j,e}$ chooses $\widehat{c_0}$ large in $A^{[3]}$.
- At $s_0 \xrightarrow{(C_0)}$ enters $A^{[3]}$ resetting W_i^A
- At $s_1 (c_1)$ enters again resetting W_i^A to s_{-1} state.
- We cancel 1 by enumerating 1 AGREEMENT
- Enum b_1 canceling $\widehat{c_1}$ but not $Y_i^{[\leq 2]}$. Enum a_1 VICTORY

Automatically roll back $Y_i^{[3]}$ since $A \oplus Y_i$ 3-REA.

- At $s_{-1} \mathcal{R}_{j,e}$ chooses \mathcal{C}_0 large in $A^{[3]}$.
- At $s_0 \xrightarrow{(C_0)}$ enters $A^{[3]}$ resetting W_i^A
- At $s_1 (c_1)$ enters again resetting W_i^A to s_{-1} state.
- We cancel 1 by enumerating 1 AGREEMENT
- Enum b_1 canceling $\widehat{c_1}$ but not $Y_i^{[\leq 2]}$. Enum a_1 VICTORY

Wait for $\mathscr{R}_{j,e}$ expansionary (again only modify $Y_i^{[3]}$) before flipflop.

- At $s_{-1} \mathcal{R}_{i,e}$ chooses \mathcal{C}_{0} large in $A^{[3]}$.
- At $s_0 \xrightarrow{(C_0)}$ enters $A^{[3]}$ resetting W_i^A
- At $s_1 (c_1)$ enters again resetting W_i^A to s_{-1} state.
- We cancel 1 by enumerating 1 AGREEMENT
- Enum b_1 canceling c_1 but not $Y_i^{[\leq 2]}$. Enum a_1 **VICTORY**

It's never that simple

- When we see q enter W_i^A we have to choose between keeping our options open or jumping back to agree with a long past stage $s_k 1$ at the cost giving up change to agree with intervening $s_{k'} 1, k' > k$
- We must decide how to respond with Y_i immediately after enumeration. Enemy can decide what set $W_{i'}^A$ to enumerate into next based on our choices so far.

Turns out clever enemy can beat most obvious ways to try and ensure agreement with the past.

- We give a second priority argument to bound number of $\mathcal{R}_{j,e}$ expansionary stages before victory.
- Turns out that considering more than one element (e.g. all $x < s_{-1}$) isn't much different than considering more sets W_i^A with Γ_i of higher priority.

イロト 不得 トイラト イラト 二日

It's never that simple

- When we see q enter W_i^A we have to choose between keeping our options open or jumping back to agree with a long past stage $s_k 1$ at the cost giving up change to agree with intervening $s_{k'} 1, k' > k$
- We must decide how to respond with Y_i immediately after enumeration. Enemy can decide what set $W_{i'}^A$ to enumerate into next based on our choices so far.

Turns out clever enemy can beat most obvious ways to try and ensure agreement with the past.

- We give a second priority argument to bound number of $\mathscr{R}_{j,e}$ expansionary stages before victory.
- Turns out that considering more than one element (e.g. all $x < s_{-1}$) isn't much different than considering more sets W_i^A with Γ_i of higher priority.

イロト 不得下 イヨト イヨト 二日

It's never that simple

- When we see q enter W_i^A we have to choose between keeping our options open or jumping back to agree with a long past stage $s_k 1$ at the cost giving up change to agree with intervening $s_{k'} 1, k' > k$
- We must decide how to respond with Y_i immediately after enumeration. Enemy can decide what set $W_{i'}^A$ to enumerate into next based on our choices so far.

Turns out clever enemy can beat most obvious ways to try and ensure agreement with the past.

- We give a second priority argument to bound number of $\mathscr{R}_{j,e}$ expansionary stages before victory.
- Turns out that considering more than one element (e.g. all $x < s_{-1}$) isn't much different than considering more sets W_i^A with Γ_i of higher priority.

Final Notes

• Lots of open questions regarding REAsets. Come and play!

• Still lots of easy to state open questions (I'm kinda obsessed with existence of minimal ω -REA arithmetic degree but I keep running into nice problems for small *n n*-REA sets)

• My rec-thy package for $\Delta T_E X 2_{\mathcal{E}}$ is at an early beta stage and feedback is welcome.

イロト イヨト イヨト

References I

- Cholak, Peter A. and Peter G. Hinman (Oct. 1994). "Iterated Relative Recursive Enumerability". en. In: Archive for Mathematical Logic 33.5, pp. 321–346. ISSN: 0933-5846, 1432-0665. DOI: 10/cxwp7d. URL: http://link.springer.com/10.1007/BF01278463 (visited on 12/18/2018).
- Jockusch, Carl G and Richard A Shore (Feb. 1983). "PSEUDO JUMP OPERATORS. I: THE R. E. CASE". en. In: *Transactions of the American Mathematical Society* 275.2, p. 11. DOI: 10/fdstv2.
- Soare, Robert I. and Michael Stob (1982). "Relative Recursive Enumerability". en. In: Studies in Logic and the Foundations of Mathematics. Vol. 107. Elsevier, pp. 299–324. ISBN: 978-0-444-86417-8. DOI: 10.1016/S0049-237X(08)71892-5. URL: https:

//linkinghub.elsevier.com/retrieve/pii/S0049237X08718925
(visited on 04/17/2019).

イロト イボト イヨト イヨト