Properly Extending Properly n-REA Sets

Peter M. Gerdes

New England Recursion and Definability Seminar 2020

Outline

(1) Background
(2) Properly Extending 2-REA Sets
(3) Non-Extendable 3-REA Set

Outline

(1) Background

(2) Properly Extending 2-REA Sets

(3) Non-Extendable 3-REA Set

REA sets

- $A^{[n]}$ is the n-th column of A and $A^{[\leq n]}$ is the restriction of A to the first n columns.
- The i-th hop is $\mathcal{H}_{i}(A) \stackrel{\text { def }}{=} A \oplus W_{i}^{A}$. REAin A is a synonym for is a hop of A.
- \emptyset is 0 -REA and if A is n-REA then $\mathcal{H}_{i}(A)$ is $n+1$-REA.
- A set is properly $(n+1)$-REA just if it is $n+1$-REA and not Turing equivalent to any n-REA set.
- We identify n-REA sets with n-column sets
where the $I+1$-st column is r.e. in the first I

REA sets

- $A^{[n]}$ is the n-th column of A and $A^{[\leq n]}$ is the restriction of A to the first n columns.
- The i-th hop is $\mathcal{H}_{i}(A) \stackrel{\text { def }}{=} A \oplus W_{i}^{A}$. REAin A is a synonym for is a hop of A.
- \emptyset is 0 -REA and if A is n-REA then $\mathcal{H}_{i}(A)$ is $n+1$-REA.
- A set is properly $(n+1)$-REA just if it is $n+1$-REA and not Turing equivalent to any n-REA set.
- We identify n-REA sets with n-column sets where the $I+1$-st column is r.e. in the first I columns.

$W_{i 0}$

REA sets

- $A^{[n]}$ is the n-th column of A and $A^{[\leq n]}$ is the restriction of A to the first n columns.
- The i-th hop is $\mathcal{H}_{i}(A) \stackrel{\text { def }}{=} A \oplus W_{i}^{A}$. REAin A is a synonym for is a hop of A.
- \emptyset is 0 -REA and if A is n-REA then $\mathcal{H}_{i}(A)$ is $n+1$-REA.
- A set is properly $(n+1)$-REA just if it is $n+1$-REA and not Turing equivalent to any n-REA set.
- We identify n-REA sets with n-column sets where the $I+1$-st column is r.e. in the first I columns.

$$
W_{i_{1}}^{W_{i_{0}}}
$$

REA sets

- $A^{[n]}$ is the n-th column of A and $A^{[\leq n]}$ is the restriction of A to the first n columns.
- The i-th hop is $\mathcal{H}_{i}(A) \stackrel{\text { def }}{=} A \oplus W_{i}^{A}$. REAin A is a synonym for is a hop of A.
- \emptyset is 0 -REA and if A is n-REA then $\mathcal{H}_{i}(A)$ is $n+1$-REA.
- A set is properly $(n+1)$-REA just if it is $n+1$-REA and not Turing equivalent to any n-REA set.
- We identify n-REA sets with n-column sets where the $I+1$-st column is r.e. in the first I columns.

$W_{i_{1}}{ }^{[}[\leq 2]$

REA sets

- $A^{[n]}$ is the n-th column of A and $A^{[\leq n]}$ is the restriction of A to the first n columns.
- The i-th hop is $\mathcal{H}_{i}(A) \stackrel{\text { def }}{=} A \oplus W_{i}^{A}$. REAin A is a synonym for is a hop of A.
- \emptyset is 0 -REA and if A is n-REA then $\mathcal{H}_{i}(A)$ is $n+1$-REA.
- A set is properly $(n+1)$-REA just if it is $n+1$-REA and not Turing equivalent to any n-REA set.
- We identify n-REA sets with n-column sets where the $I+1$-st column is r.e. in the first I columns.
- We will denote the n-REA set with index e by X_{e}.

$W_{i_{1}}{ }^{[\leq 2]}$

Axioms

- Handwaving details consider an approximation to a 3-REA set A.
- 1 enumerated into 3-rd column dependent on highlighted area.
- Enumeration of 1 cancels 1
- 1 cancels 1 restoring 1

- Can effectively identify n-REA sets with r.e. sets of axioms (enumerate y into $A^{[n]}$ if $\left.\sigma \prec A^{[}<n\right]$)

Axioms

- Handwaving details consider an approximation to a 3-REA set A.
- 1 enumerated into 3 -rd column dependent on highlighted area.
- Enumeration of 1 cancels
- 1 cancels 1 restoring 1

- Can effectively identify n-REA sets with r.e. sets of axioms (enumerate y into $A^{[n]}$ if $\sigma \prec A^{[<n]}$).

Axioms

- Handwaving details consider an approximation to a 3-REA set A.
- 1 enumerated into 3-rd column dependent on highlighted area.
- Enumeration of 1 cancels 1
- 1 cancels 1 restoring

- Can effectively identify n-REA sets with r.e. sets of axioms (enumerate y into $A^{[n]}$ if $\left.\sigma \prec A^{[<n]}\right)$

Axioms

- Handwaving details consider an approximation to a 3-REA set A.
- 1 enumerated into 3 -rd column dependent on highlighted area.
- Enumeration of 1 cancels 1
- 1 cancels 1 restoring

- Can effectively identify n-REA sets with r.e. sets of axioms (enumerate y into $A^{[n]}$ if $\left.\sigma \prec A^{[<n]}\right)$

Axioms

- Handwaving details consider an approximation to a 3-REA set A.
- 1 enumerated into 3-rd column dependent on highlighted area.
- Enumeration of 1 cancels 1
- 1 cancels 1 restoring 1

- Can effectively identify n-REA sets with r.e. sets of axioms (enumerate y into $A^{[n]}$ if

Axioms

- Handwaving details consider an approximation to a 3-REA set A.
- 1 enumerated into 3-rd column dependent on highlighted area.
- Enumeration of 1 cancels 1
- 1 cancels 1 restoring 1

- Can effectively identify n-REA sets with r.e. sets of axioms (enumerate y into $A^{[n]}$ if $\sigma \prec A^{[<n]}$).

Proper Extendability

Question

Can every properly n-REA set A be extended to a properly $n+1-R E A$ set $\mathcal{H}_{i}(A)$?

Proper Extendability

Question

Can every properly n-REA set A be extended to a properly $n+1-R E A$ set $\mathcal{H}_{i}(A)$?

Prior Results

- Trivially true for $n=0$
- The claim is true for $n=1$ (Soare and Stob 1982)
- The claim is true for $n=2$ (Cholak and Hinman 1994).

Proper Extendability

Question

Can every properly n-REA set A be extended to a properly $n+1-R E A$ set $\mathcal{H}_{i}(A)$?

Prior Results

- Trivially true for $n=0$
- The claim is true for $n=1$ (Soare and Stob 1982)
- The claim is true for $n=2$ (Cholak and Hinman 1994).

Novel Result with Peter Cholak

Claim fails at $n=3$.

Outline

(1) Background

(2) Properly Extending 2-REA Sets

(3) Non-Extendable 3-REA Set

2-REA Proper Extendability

Proposition (Cholak and Hinman 1994)

Every properly 2-REA can be extended to a properly 3-REA set.

Build A r.e. in proper 2-REA C meeting (where X_{e} is 2-REA)

Requirements

- We think of $C \oplus A$ as a 3 column set.
- Can find j so ϕ_{j}^{Z} switches computation based on $Z=X_{e}$ or $Z=C \oplus A$.
Let's start easy and suppose we control C. How would we build $Z=C \oplus A$ to be properly 3-REA set

2-REA Proper Extendability

Proposition (Cholak and Hinman 1994)

Every properly 2-REA can be extended to a properly 3-REA set.
Build A r.e. in proper 2-REA C meeting (where X_{e} is 2-REA):

Requirements

$$
\mathscr{2}_{j, e}:\left(\phi_{j}^{C \oplus A} \neq X_{e} \vee \phi_{j}^{X_{e}} \neq C \oplus A\right)
$$

- We think of $C \oplus A$ as a 3 column set.
- Can find j so ϕ_{j}^{Z} switches computation based on $Z=X_{e}$ or $Z=C \oplus A$.
Let's start easy and suppose we control C. How would we build $Z=C \oplus A$ to be properly 3-REA set.

2-REA Proper Extendability

Proposition (Cholak and Hinman 1994)

Every properly 2-REA can be extended to a properly 3-REA set.
Build A r.e. in proper 2-REA C meeting (where X_{e} is 2-REA):

Requirements

$$
\mathscr{Q}_{j, e}:\left(\phi_{j}^{C \oplus A} \neq X_{e} \vee \phi_{j}^{X_{e}} \neq C \oplus A\right)
$$

- We think of $C \oplus A$ as a 3 column set.
- Can find j so ϕ_{j}^{Z} switches computation based on $Z=X_{e}$ or $Z=C \oplus A$.
Let's start easy and suppose we control C. How would we build $Z=C \oplus A$ to be properly 3-REA set.

Building Properly 3-REA

Meet one requirement for $Z: \phi_{j}^{Z} \neq X_{e} \vee \phi_{j}^{X_{e}} \neq Z$

- Hold (23) out of Z (red for disagree).
- Await agreement. Gray X_{e} area use closed.
- Put (23) in Z. Await agreement.
- Some X_{2} must enter X_{e}.
- Extend agreement. x_{2} use included for use closure.
- Cancel (23) by enumerating
- Restores computation with $X_{\epsilon}\left(x_{2}\right)=0$. Await Agreement.
- Some x_{1} must cancel x_{2} to agree.
- Cancel z_{2} with z_{1}. Restoring comp: $X_{e}\left(x_{1}\right)=0$. Permanent

Disagreement.

Building Properly 3-REA

Meet one requirement for $Z: \phi_{j}^{Z} \neq X_{e} \vee \phi_{j}^{X_{e}} \neq Z$

- Hold (23) out of Z (red for disagree).
- Await agreement. Gray X_{e} area use closed.
- Put (23) in Z. Await agreement.
- Some X_{2} must enter X_{e}.
- Extend agreement.

for use closure.

- Cancel (z3) by enumerating
- Restores computation with $X_{e}\left(x_{2}\right)=0$. Await Agreement.
- Some x_{1} must cancel x_{2} to agree.
- Cancel z_{2} with z_{1}. Restoring comp: $X_{e}\left(x_{1}\right)=0$. Permanent

Disagreement.

Building Properly 3-REA

Meet one requirement for $Z: \phi_{j}^{Z} \neq X_{e} \vee \phi_{j}^{X_{e}} \neq Z$

- Hold (23) out of Z (red for disagree).
- Await agreement. Gray X_{e} area use closed.
- Put (23) in Z. Await agreement.
- Some x_{2} must enter X_{e}.
- Extend agreement.
use included

for use closure.

- Cancel (23) by enumerating
- Restores computation with $X_{e}\left(x_{2}\right)=0$. Await Agreement.
- Some x_{1} must cancel x_{2} to agree.
- Cancel z_{2} with z_{1}. Restoring comp: $X_{e}\left(x_{1}\right)=0$. Permanent

Disagreement.

Building Properly 3-REA

Meet one requirement for $Z: \phi_{j}^{Z} \neq X_{e} \vee \phi_{j}^{X_{e}} \neq Z$

- Hold (23) out of Z (red for disagree).
- Await agreement. Gray X_{e} area use closed.
- Put (23) in Z. Await agreement.
- Some x_{2} must enter X_{e}.
- Extend agreement.
use included

for use closure.

- Cancel (23) by enumerating
- Restores computation with $X_{e}\left(x_{2}\right)=0$. Await Agreement.
- Some x_{1} must cancel x_{2} to agree.
- Cancel z_{2} with z_{1}. Restoring comp: $X_{e}\left(x_{1}\right)=0$. Permanent

> Disagreement.

Building Properly 3-REA

Meet one requirement for $Z: \phi_{j}^{Z} \neq X_{e} \vee \phi_{j}^{X_{e}} \neq Z$

- Hold (23) out of Z (red for disagree).
- Await agreement. Gray X_{e} area use closed.
- Put (23) in Z. Await agreement.
- Some x_{2} must enter X_{e}.
- Extend agreement. x_{2} use included for use closure.
- Cancel (23) by enumerating
- Restores computation with $X_{\epsilon}\left(x_{2}\right)=0$. Await Agreement.
- Some x_{1} must cancel x_{2} to agree.
- Cancel z_{2} with z_{1}. Restoring comp: $X_{e}\left(x_{1}\right)=0$. Permanent Disagreement.

Building Properly 3-REA

Meet one requirement for Z : $\phi_{j}^{Z} \neq X_{e} \vee \phi_{j}^{X_{e}} \neq Z$

- Hold (23) out of Z (red for disagree).
- Await agreement. Gray X_{e} area use closed.
- Put (23) in Z. Await agreement.
- Some x_{2} must enter X_{e}.
- Extend agreement. x_{2} use included for use closure.
- Cancel (23) by enumerating z_{2}.
- Restores computation with $X_{e}\left(x_{2}\right)=0$. Await Agreement.
- Some x_{1} must cancel x_{2} to agree.
- Cancel z_{2} with z_{1}. Restoring comp: $X_{e}\left(X_{1}\right)=0$. Permanent

Disagreement.

Building Properly 3-REA

Meet one requirement for Z : $\phi_{j}^{Z} \neq X_{e} \vee \phi_{j}^{X_{e}} \neq Z$

- Hold (23) out of Z (red for disagree).
- Await agreement. Gray X_{e} area use closed.
- Put (23) in Z. Await agreement.
- Some x_{2} must enter X_{e}.
- Extend agreement. x_{2} use included for use closure.
- Cancel Z_{23} by enumerating z_{2}.
- Restores computation with $X_{e}\left(x_{2}\right)=0$. Await Agreement.
- Some x_{1} must cancel x_{2} to agree.
- Cancel z_{2} with z_{1}. Restoring comp: $X_{e}\left(x_{1}\right)=0$. Permanent

Disagreement.

Building Properly 3-REA

Meet one requirement for Z : $\phi_{j}^{Z} \neq X_{e} \vee \phi_{j}^{X_{e}} \neq Z$

- Hold (23) out of Z (red for disagree).
- Await agreement. Gray X_{e} area use closed.
- Put (23) in Z. Await agreement.
- Some x_{2} must enter X_{e}.
- Extend agreement. x_{2} use included for use closure.
- Cancel (23) by enumerating z_{2}.
- Restores computation with $X_{e}\left(x_{2}\right)=0$. Await Agreement.
- Some x_{1} must cancel x_{2} to agree.
- Cancel z_{2} with z_{1}. Restoring comp: $X_{e}\left(x_{1}\right)=0$. Permanent Disagreement

Building Properly 3-REA

Meet one requirement for Z : $\phi_{j}^{Z} \neq X_{e} \vee \phi_{j}^{X_{e}} \neq Z$

- Hold (23) out of Z (red for disagree).
- Await agreement. Gray X_{e} area use closed.
- Put (23) in Z. Await agreement.
- Some x_{2} must enter X_{e}.
- Extend agreement. x_{2} use included for use closure.
- Cancel ${ }_{(23}$ by enumerating z_{2}.
- Restores computation with $X_{e}\left(x_{2}\right)=0$. Await Agreement.
- Some x_{1} must cancel x_{2} to agree.
- Cancel z_{2} with z_{1}. Restoring comp: $X_{e}\left(x_{1}\right)=0$. Permanent Disagreement.

Extending Properly 2-REA

Try building A so $C \oplus A$ performs above construction.

- Problem: C might not supply
- Assume: build $z_{3}^{n}, n \in \omega$ so all late ($C^{[1]}$ comp modulus) enums into $C^{[2]}$ work as some
- MIN If X_{e} doesn't cancel (in r.e. proof couldn't)
- Undoing z_{2}^{n} enum (restoring prior agreement) gives WIN.
- Othermise $C^{[1]} \oplus X^{[1]}$ recovers C since $C^{[2]}$ enum ensures $X_{e}{ }^{[1]}$ change WIN
\geq_{T} : Every late (not before $C^{[1]}$ modulus) entry into $C^{[2]}$ serves as some causing change to $X_{e}{ }^{[1]}$ below bound set when z_{3}^{n} enumerated.

Extending Properly 2-REA

Try building A so $C \oplus A$ performs above construction.

- Problem: C might not supply
- Assume: build z_{3}^{n}. $n \in \omega$ so all late ($C^{[1]}$ comp modulus) enums into $C^{[2]}$ work as some
- MIN If X_{e} doesn't cancel (in r.e. proof couldn't)
- Undoing z_{2}^{n} enum (restoring prior agreement) gives WIN.
- Othermise $C^{[1]} \oplus X^{[1]}$ recovers C since $C^{[2]}$ enum ensures $X_{e}{ }^{[1]}$ change WIN
\geq_{T} : Every late (not before $C^{[1]}$ modulus) entry into $C^{[2]}$ serves as some causing change to $X_{e}{ }^{[1]}$ below bound set when z_{3}^{n} enumerated.

Extending Properly 2-REA

Try building A so $C \oplus A$ performs above construction.

- Problem: C might not supply
- Assume: build $z_{3}^{n}, n \in \omega$ so all late ($C^{[1]}$ comp modulus) enums into $C^{[2]}$ work as some
- WINI If X_{e} doesn't cancel (in r.e. proof couldn't)
- Undoing z_{2}^{n} enum (restoring prior agreement) gives WIN.
- Otherwise $C^{[1]} \oplus X_{e}^{[1]}$ recovers C since $C^{[2]}$ enum ensures $X_{e}{ }^{[1]}$ change WIN
\geq_{T} : Every late (not before $C^{[1]}$ modulus) entry into $C^{[2]}$ serves as some causing change to $X_{e}{ }^{[1]}$ below bound set when z_{3}^{n} enumerated.

Extending Properly 2-REA

Try building A so $C \oplus A$ performs above construction.

- Problem: C might not supply
- Assume: build $z_{3}^{n}, n \in \omega$ so all late ($C^{[1]}$ comp modulus) enums into $C^{[2]}$ work as some
- WIN If X_{e} doesn't cancel (in r.e. proof couldn't)
- Undoing z_{2}^{n} enum (restoring prior agreement) gives WIN.
- Othermise $C^{[1]} \oplus X^{[1]}$ recovers C since $C^{[2]}$ enum ensures $X_{e}{ }^{[1]}$ change WIN
\geq_{T} : Every late (not before $C^{[1]}$ modulus) entry into $C^{[2]}$ serves as some causing change to $X_{e}{ }^{[1]}$ below bound set when z_{3}^{n} enumerated.

Extending Properly 2-REA

Try building A so $C \oplus A$ performs above construction.

- Problem: C might not supply z_{2}.
- Assume: build $z_{3}^{n}, n \in \omega$ so all late ($C^{[1]}$ comp modulus) enums into $C^{[2]}$ work as some z_{2}^{n}.
- Undoing z_{2}^{n} enum (restoring prior agreement) gives WIN.
- Othermise change WIN

modulus) entry into $C^{[2]}$ serves as some causing change to $X_{e}^{[1]}$ below bound set when z_{3}^{n} enumerated.

Extending Properly 2-REA

Try building A so $C \oplus A$ performs above construction.

- Problem: C might not supply z_{2}.
- Assume: build $z_{3}^{n}, n \in \omega$ so all late ($C^{[1]}$ comp modulus) enums into $C^{[2]}$ work as some z_{2}^{n}.
- Undoing
enum (restoring prior agreement) gives WIN.
- Othermise change WIN

modulus) entry into $C^{[2]}$ serves as some causing change to $X_{e}^{[1]}$ below bound set when z_{3}^{n} enumerated.

Extending Properly 2-REA

Try building A so $C \oplus A$ performs above construction.

- Problem: C might not supply z_{2}.
- Assume: build $z_{3}^{n}, n \in \omega$ so all late ($C^{[1]}$ comp modulus) enums into $C^{[2]}$ work as some z_{2}^{n}.
- WIN If X_{e} doesn't cancel (in r.e. proof couldn't)
- Undoing
enum (restoring prior agreement) gives WIN.
- Otherwise change WIN \geq_{T} : Every late (not before causing change to $X_{e}{ }^{[1]}$ below bound set when z_{3}^{n} enumerated

Extending Properly 2-REA

Try building A so $C \oplus A$ performs above construction.

- Problem: C might not supply z_{2}.
- Assume: build $z_{3}^{n}, n \in \omega$ so all late ($C^{[1]}$ comp modulus) enums into $C^{[2]}$ work as some z_{2}^{n}.
- WIN If X_{e} doesn't cancel (in r.e. proof couldn't)
- Undoing z_{2}^{n} enum (restoring prior agreement) gives WIN.

causing change to $X_{e}{ }^{[1]}$ below bound set when z_{3}^{n} enumerated.

Extending Properly 2-REA

Try building A so $C \oplus A$ performs above construction.

- Problem: C might not supply z_{2}.
- Assume: build $z_{3}^{n}, n \in \omega$ so all late ($C^{[1]}$ comp modulus) enums into $C^{[2]}$ work as some z_{2}^{n}.
- WIN If X_{e} doesn't cancel (in r.e. proof couldn't)
- Undoing z_{2}^{n} enum (restoring prior agreement) gives WIN.
- Otherwise $C^{[1]} \oplus X_{e}{ }^{[1]}$ recovers C since $C^{[2]}$ enum ensures $X_{e}{ }^{[1]}$ change WIN
$\leq_{\mathrm{T}}: \mathscr{Q}_{j, e}$ acts infinitely so $C \equiv_{\mathrm{T}} C \oplus A \equiv_{\mathrm{T}} X_{e} \geq_{\mathrm{T}} X_{e}{ }^{[1]}$
\geq_{T} : Every late (not before $C^{[1]}$ modulus) entry into $C^{[2]}$ serves as some z_{2}^{n} causing change to $X_{e}{ }^{[1]}$ below bound set when z_{3}^{n} enumerated.

No Uniform Proper Extendability

If z_{3}^{n} choice (Assume) existed result would be uniform. It's not!

Proposition (Cholak and Hinman 1994)

For all $n>0$, total computable p there is a properly n-REA set X_{e} such that $\mathcal{H}_{p(e)}\left(X_{e}\right)$ is not properly $n-R E A$

Proof.

- Build $X_{e}=\mathcal{H}_{e}\left(\mathbb{O}^{(n-1)}\right)$ to frustrate p. Assume we know $j=p(e)$.
- Let h (Hop inversion Jockusch and Shore 1983) satisfy $\mathcal{H}_{j}\left(X_{h(j)}\right) \equiv \mathbb{T}^{(n)}$.
- By fixed point let j s.t. $W_{j}^{Z}=W_{p(h(j))}^{Z}$ and $e=h(j)$.
- Hence $\mathcal{H}_{p(e)}\left(X_{e}\right)=\mathcal{H}_{p(h(j))}\left(X_{h(j)}\right)=\mathcal{H}_{j}\left(X_{h(j)}\right) \equiv{ }_{\mathrm{T}} \mathbb{D}^{(n)}$

Non-uniform Approach

Idea

Build A_{0}, A_{1} so that one of $C \oplus A_{i}$ is properly 3-REA.

Requirements

Chose $z_{3}^{n, k}$ for A_{k} and interleave so that
(1) Sequence infinite iff $\neg \mathscr{Q}_{e_{0}, e_{1}, j}$. (Only stop on disagree)
(2) Any late enum into $C^{[2]}$ acts as $z_{2}^{m, k^{\prime}}$, i.e., cancels $z_{3}^{m, k^{\prime}}$
(3) $C_{s}{ }^{[1]} \oplus X_{e s}{ }^{[1]}$ bounds $z_{3}^{n, k}$

Non-uniform Approach

Idea

Build A_{0}, A_{1} so that one of $C \oplus A_{i}$ is properly 3-REA.

Requirements

$$
\mathscr{Q}_{e_{0}, e_{1}, j}:(\exists k)\left(\phi_{j}^{C \oplus A_{k}} \neq X_{e_{k}} \vee \phi_{j}^{X_{e_{k}}} \neq C \oplus A_{k}\right)
$$

Chose $z_{3}^{n, k}$ for A_{k} and interleave so that:
(1) Sequence infinite iff $\neg \mathscr{Q}_{e_{0}, e_{1}, j}$. (Only stop on disagree)
(2) Any late enum into $C^{[2]}$ acts as $z_{2}^{m, k^{\prime}}$, i.e., cancels $z_{3}^{m, k}$
(3) $C_{s}{ }^{[1]} \oplus X_{e, s}{ }^{[1]}$ bounds $z_{3}^{n, k}$

Non-uniform Approach

Idea

Build A_{0}, A_{1} so that one of $C \oplus A_{i}$ is properly 3-REA.

Requirements

$$
\mathscr{Q}_{e_{0}, e_{1}, j}:(\exists k)\left(\phi_{j}^{C \oplus A_{k}} \neq X_{e_{k}} \vee \phi_{j}^{X_{e_{k}}} \neq C \oplus A_{k}\right)
$$

Idea

Chose $z_{3}^{n, k}$ for A_{k} and interleave so that:
(1) Sequence infinite iff $\neg \mathscr{Q}_{e_{0}, e_{1}, j}$. (Only stop on disagree)
(2) Any late enum into $C^{[2]}$ acts as $z_{2}^{m, k^{\prime}}$, i.e., cancels $z_{3}^{m, k^{\prime}}$.
(3) $C_{s}{ }^{[1]} \oplus X_{e, s}{ }^{[1]}$ bounds $z_{3}^{n, k}$.

Interleaving $z_{3}^{n, k}$

- Except for finite initial segment any enumeration into $C^{[2]}$ lands in an area where it can remove some $z_{3}^{n, k}$ and restore the prior computation.

Interleaving $z_{3}^{n, k}$

- Except for finite initial segment any enumeration into $C^{[2]}$ lands in an area where it can remove some $z_{3}^{n, k}$ and restore the prior computation.

Interleaving $z_{3}^{n, k}$

- Except for finite initial segment any enumeration into $C^{[2]}$ lands in an area where it can remove some $z_{3}^{n, k}$ and restore the prior computation.

Interleaving $z_{3}^{n, k}$

- Except for finite initial segment any enumeration into $C^{[2]}$ lands in an area where it can remove some $z_{3}^{n, k}$ and restore the prior computation.

Interleaving $z_{3}^{n, k}$

- Except for finite initial segment any enumeration into $C^{[2]}$ lands in an area where it can remove some $z_{3}^{n, k}$ and restore the prior computation.

Interleaving $z_{3}^{n, k}$

- Except for finite initial segment any enumeration into $C^{[2]}$ lands in an area where it can remove some $z_{3}^{n, k}$ and restore the prior computation.

Interleaving $z_{3}^{n, k}$

- Except for finite initial segment any enumeration into $C^{[2]}$ lands in an area where it can remove some $z_{3}^{n, k}$ and restore the prior computation.

Interleaving $z_{3}^{n, k}$

- Except for finite initial segment any enumeration into $C^{[2]}$ lands in an area where it can remove some $z_{3}^{n, k}$ and restore the prior computation.

Interleaving $z_{3}^{n, k}$

- Except for finite initial segment any enumeration into $C^{[2]}$ lands in an area where it can remove some $z_{3}^{n, k}$ and restore the prior computation.

Outline

(1) Background

(2) Properly Extending 2-REA Sets
(3) Non-Extendable 3-REA Set

Novel Result

Theorem (Novel Result with Peter Cholak)

There is a properly $3-R E A$ set A which can't be extended to a properly 4- REA set $\mathcal{H}_{i}(A)$.

Build $A, Y_{i} 3-R E A \Gamma_{i}, \Theta$ to satisfy: (where X_{e} is 2-REA)

Requirements

$\mathscr{P}_{i}:$

$$
\begin{aligned}
& \Gamma_{i}\left(\mathcal{H}_{i}(A)\right)=Y_{i} \wedge \ominus\left(Y_{i}\right)=W_{i}^{A} \\
& \Phi_{j}(A) \neq X_{e} \vee \Phi_{j}\left(X_{e}\right) \neq A
\end{aligned}
$$

- \mathscr{P}_{i} ensures that $A \bar{\oplus} Y_{i} \stackrel{\text { def }}{=} \bigoplus_{k \leq 3} A^{[k]} \oplus Y_{i}{ }^{[k]}$ is 3-REA set equivalent to $\mathcal{H}_{i}(A)$
- $\mathscr{R}_{j, e}$ met like proper 3-REA construction (but rename z_{1}, z_{2}, z_{3} to $a, b, c)$.

Novel Result

Theorem (Novel Result with Peter Cholak)

There is a properly 3-REA set A which can't be extended to a properly 4-REA set $\mathcal{H}_{i}(A)$.

Build $A, Y_{i} 3$-REA Γ_{i}, Θ to satisfy: (where X_{e} is 2-REA)

Requirements

$$
\begin{aligned}
& \mathscr{P}_{i}: \quad \Gamma_{i}\left(\mathcal{H}_{i}(A)\right)=Y_{i} \wedge \Theta\left(Y_{i}\right)=W_{i}^{A} \\
& \mathscr{R}_{j, e}: \quad \Phi_{j}(A) \neq X_{e} \vee \Phi_{j}\left(X_{e}\right) \neq A
\end{aligned}
$$

- \mathscr{P}_{i} ensures that $A \bar{\oplus} Y_{i} \stackrel{\text { def }}{=} \bigoplus_{k \leq 3} A^{[k]} \oplus Y_{i}{ }^{[k]}$ is 3-REA set equivalent

$$
\text { to } \mathcal{H}_{i}(A)
$$

- $\mathscr{R}_{j, e}$ met like proper 3-REA construction (but rename z_{1}, z_{2}, z_{3} to $a, b, c)$.

Novel Result

Theorem (Novel Result with Peter Cholak)

There is a properly 3-REA set A which can't be extended to a properly 4-REA set $\mathcal{H}_{i}(A)$.

Build $A, Y_{i} 3$-REA Γ_{i}, Θ to satisfy: (where X_{e} is 2-REA)

Requirements

$$
\begin{aligned}
& \mathscr{P}_{i}: \quad \Gamma_{i}\left(\mathcal{H}_{i}(A)\right)=Y_{i} \wedge \Theta\left(Y_{i}\right)=W_{i}^{A} \\
& \mathscr{R}_{j, e}: \Phi_{j}(A) \neq X_{e} \vee \Phi_{j}\left(X_{e}\right) \neq A
\end{aligned}
$$

- \mathscr{P}_{i} ensures that $A \bar{\oplus} Y_{i} \stackrel{\text { def }}{=} \bigoplus_{k \leq 3} A^{[k]} \oplus Y_{i}{ }^{[k]}$ is 3-REA set equivalent to $\mathcal{H}_{i}(A)$
- $\mathscr{R}_{j, e}$ met like proper 3-REA construction (but rename z_{1}, z_{2}, z_{3} to $a, b, c)$.

Construction Framework

- Use finite injury method to build A, Y_{i} as limit of approximations.
- We maintain agreement at all stages and choose I_{s} large at end of s.
- Θ must allow enum into $Y_{i}{ }^{[3]}$ (above x) to toggle $\Theta\left(Y_{i} ; x\right)$, e.g., $\Theta_{s}\left(Y_{i} ; x\right)$ is size of $Y_{i, s}^{[3][x]} \upharpoonright\left[I_{s}\right]$.
- Use axioms $\Gamma_{i}\left(A_{s} \upharpoonright\left[I_{s}\right]\right)=Y_{i, s} \upharpoonright\left[I_{s}\right]$ to define Γ_{i}. Note: infinitely often we restrain A_{s} on large inital segment.
- $\mathscr{R}_{j, e}$ only needs to avoid reinitializing Γ_{i} for $i<\langle\langle j, e\rangle\rangle$. removes smaller elements from W_{i}^{A} restoring prior Γ_{i} commitment.

Construction Framework

- Use finite injury method to build A, Y_{i} as limit of approximations.
- We maintain agreement at all stages and choose I_{s} large at end of s.
- Θ must allow enum into $Y_{i}{ }^{[3]}$ (above x) to toggle $\Theta\left(Y_{i} ; x\right)$, e.g., $\Theta_{s}\left(Y_{i} ; x\right)$ is size of $Y_{i, s}^{[3][x]} \upharpoonright\left[I_{s}\right]$.
- Use axioms $\Gamma_{i}\left(A_{s} \upharpoonright\left[I_{s}\right]\right)=Y_{i, s} \upharpoonright\left[I_{s}\right]$ to define Γ_{i}. Note: infinitely often we restrain A_{s} on large inital segment.
- $\mathscr{R}_{j, e}$ only needs to avoid reinitializing Γ_{i} for $i<\langle\langle j, e\rangle\rangle$.

Fact

Entry into A, W_{i}^{A} allows redefinition of Y_{i} above x. Only danger is x removes smaller elements from W_{i}^{A} restoring prior Γ_{i} commitment.

Change Indifference For $\mathcal{R}_{j, e}$

- Enemy $\left(W_{i}^{A}\right)$ wants to walk changes 'up' columns of Y_{i} till can't match
- Enemy can use interleaving trick so if c enters $A^{[3]}$ it restores some prior computation (therefore forcing $Y_{i}{ }^{[2]}$ change).
- Want to avoid $Y_{i}{ }^{[\leq 2]}$ change when enumerating b into $A^{[3]}$
\square
Try (in order) many options c_{n} for c. We have option to cancel c_{k} and 'time travel' to point in time right before enumerating c_{k}. Enemy will run out of different ways to enumerate into
- We will assume that we enumerate $c_{k}=c_{0}+k$ (ish) into $A^{[3]}$ at stages s_{k} where agreement with X_{e} increases.
- Want to time travel to immediatly before c_{k} enumerated without

Change Indifference For $\mathcal{R}_{j, e}$

- Enemy $\left(W_{i}^{A}\right)$ wants to walk changes 'up' columns of Y_{i} till can't match
- Enemy can use interleaving trick so if c enters $A^{[3]}$ it restores some prior computation (therefore forcing $Y_{i}{ }^{[2]}$ change).
- Want to avoid $Y_{i}{ }^{[\leq 2]}$ change when enumerating b into $A^{[3]}$

Idea

Try (in order) many options c_{n} for c. We have option to cancel c_{k} and 'time travel' to point in time right before enumerating c_{k}. Enemy will run out of different ways to enumerate into $W_{i}^{A}, i<\langle\langle j, e\rangle\rangle$.

- We will assume that we enumerate $c_{k}=c_{0}+k$ (ish) into $A^{[3]}$ at stages s_{k} where agreement with X_{e} increases.
- Want to time travel to immediatly before c_{k} en umerated without

Change Indifference For $\mathcal{R}_{j, e}$

- Enemy $\left(W_{i}^{A}\right)$ wants to walk changes 'up' columns of Y_{i} till can't match
- Enemy can use interleaving trick so if c enters $A^{[3]}$ it restores some prior computation (therefore forcing $Y_{i}{ }^{[2]}$ change).
- Want to avoid $Y_{i}{ }^{[\leq 2]}$ change when enumerating b into $A^{[3]}$

Idea

Try (in order) many options c_{n} for c. We have option to cancel c_{k} and 'time travel' to point in time right before enumerating c_{k}. Enemy will run out of different ways to enumerate into $W_{i}^{A}, i<\langle\langle j, e\rangle\rangle$.

- We will assume that we enumerate $c_{k}=c_{0}+k$ (ish) into $A^{[3]}$ at stages s_{k} where agreement with X_{e} increases.
- Want to time travel to immediatly before c_{k} enumerated without changing $Y_{i}{ }^{[\leq 2]}$.

Basic $\mathcal{R}_{j, e}$ Action

Functionals defined on some initial use.

- At $s_{-1} \mathcal{R}_{j, e}$ chooses © large in $A^{[3]}$
- At s_{0} © enters $A^{[3]}$ resetting W_{i}^{A}
- At s_{1} (C1 enters again resetting W_{i}^{A} to s_{-1} state.
- We cancel 1 by enumerating 1
- Enum b_{1} canceling (c_{1} but not $Y_{i}[\leq 2]$

Basic $\mathcal{R}_{j, e}$ Action

Ignore all elements but one (call q) entering/leaving W_{i}^{A} for now.

- At $s_{-1} \mathcal{R}_{j, e}$ chooses © large in $A^{[3]}$.
- At s_{0} © enters $A^{[3]}$ resetting W_{i}^{A}
- At $s_{1}\left(C_{1}\right)$ enters again resetting W_{i}^{A} to s_{-1} state.
- We cancel 1 by enumerating 1
- Enum
canceling $\left(C_{1}\right)$ but not $Y_{i}[\leq 2]$

Basic $\mathcal{R}_{j, e}$ Action

Elements enter W_{i}^{A} while waiting to see agreement with X_{e}.

- At $s_{-1} \mathcal{R}_{j, e}$ chooses © large in $A^{[3]}$.
- At s_{0} (c) enters $A^{[3]}$ resetting W_{i}^{A}
- At s_{1} (C1) enters again resetting W_{i}^{A} to s_{-1} state.
- We cancel 1 by enumerating 1
- Enum
canceling (C_{1} but not $Y_{i}[\leq 2]$

Basic $\mathcal{R}_{j, e}$ Action

Must cancel enumerations into Y_{i} to agree with prior computation.

- At $s_{-1} \mathcal{R}_{j, e}$ chooses © large in $A^{[3]}$.
- At s_{0} © enters $A^{[3]}$ resetting W_{i}^{A}
- At $s_{1}\left(C_{1}\right)$ enters again resetting W_{i}^{A} to s_{-1} state.
- We cancel 1 by enumerating 1
- Enum
canceling C_{1} but not $Y_{i}[$ 2]

Basic $\mathcal{R}_{j, e}$ Action

Interlude: What if we tried to use c_{0} as c by enum b_{0} into $A^{[2]}$

- At $s_{-1} \mathcal{R}_{j, e}$ chooses © large in $A^{[3]}$.
- At s_{0} © enters $A^{[3]}$ resetting W_{i}^{A}
- At $s_{1}\left(C_{1}\right)$ enters again resetting W_{i}^{A} to s_{-1} state.
- We cancel 1 by enumerating 1
- Enum
canceling C_{1} but not $Y_{i}[$ 2]

Basic $\mathcal{R}_{j, e}$ Action

Interlude: q returned to W_{i}^{A}, Y_{i}. Cancelling b_{0} would break functionals.

- At $s_{-1} \mathcal{R}_{j, e}$ chooses © large in $A^{[3]}$.
- At s_{0} © enters $A^{[3]}$ resetting W_{i}^{A}
- At $s_{1}\left(C_{1}\right)$ enters again resetting W_{i}^{A} to s_{-1} state.
- We cancel 1 by enumerating 1
- Enum
canceling C_{1} but not $Y_{i}{ }^{[<2]}$

Basic $\mathcal{R}_{j, e}$ Action

Instead we wait for X_{e} agree through © C_{1}

- At $s_{-1} \mathcal{R}_{j, e}$ chooses © large in $A^{[3]}$.
- At s_{0} © enters $A^{[3]}$ resetting W_{i}^{A}
- At $s_{1}\left(C_{1}\right)$ enters again resetting W_{i}^{A} to s_{-1} state.
- We cancel 1 by enumerating 1
- Enum
canceling C_{1} but not $Y_{i}{ }^{[\leq 2]}$

Basic $\mathcal{R}_{j, e}$ Action

During wait q enters W_{0}^{A} changing Y_{0}.

- At $s_{-1} \mathcal{R}_{j, e}$ chooses © large in $A^{[3]}$.
- At s_{0} © enters $A^{[3]}$ resetting W_{i}^{A}
- At $s_{1}\left(C_{1}\right)$ enters again resetting W_{i}^{A} to s_{-1} state.
- We cancel 1 by enumerating 1
- Enum
canceling C_{1} but not $Y_{i}[\leqslant 2]$

Basic $\mathcal{R}_{j, e}$ Action

c_{1} cancels q from W_{0}^{A} changing Y_{0} not Y_{1}

- At $s_{-1} \mathcal{R}_{j, e}$ chooses © large in $A^{[3]}$.
- At s_{0} © enters $A^{[3]}$ resetting W_{i}^{A}
- At s_{1} (C1) enters again resetting W_{i}^{A} to s_{-1} state.
- Enum
canceling (C_{1}) but not $Y_{i}[\leq 2]$

Basic $\mathcal{R}_{j, e}$ Action

q enum into W_{0}^{A}. Restore old state of Y_{0} don't re-enum code for q.

- At $s_{-1} \mathcal{R}_{j, e}$ chooses © large in $A^{[3]}$.
- At s_{0} © enters $A^{[3]}$ resetting W_{i}^{A}
- At s_{1} (C1) enters again resetting W_{i}^{A} to s_{-1} state.
- We cancel 1 by enumerating 1 AGREEMENT

Basic $\mathcal{R}_{j, e}$ Action

Only enum into $Y_{i}{ }^{[3]}$ untill $\mathscr{R}_{j, e}$ expansionary.

- At $s_{-1} \mathcal{R}_{j, e}$ chooses © large in $A^{[3]}$.
- At s_{0} © enters $A^{[3]}$ resetting W_{i}^{A}
- At s_{1} (C1) enters again resetting W_{i}^{A} to s_{-1} state.
- We cancel 1 by enumerating 1 AGREEMENT

Basic $\mathcal{R}_{j, e}$ Action

Automatically roll back $Y_{i}{ }^{[3]}$ since $A \bar{\oplus} Y_{i}$ 3-REA.

- At $s_{-1} \mathcal{R}_{j, e}$ chooses © large in $A^{[3]}$.
- At s_{0} © enters $A^{[3]}$ resetting W_{i}^{A}
- At $s_{1}\left(C_{1}\right)$ enters again resetting W_{i}^{A} to s_{-1} state.
- We cancel 1 by enumerating 1 AGREEMENT
- Enum b_{1} canceling (C_{1} but not $Y_{i}{ }^{[\leq 2]}$.

Basic $\mathcal{R}_{j, e}$ Action

Wait for $\mathscr{R}_{j, e}$ expansionary (again only modify $Y_{i}^{[3]}$) before flipflop.

- At $s_{-1} \mathcal{R}_{j, e}$ chooses © large in $A^{[3]}$.
- At s_{0} © enters $A^{[3]}$ resetting W_{i}^{A}
- At s_{1} (C1) enters again resetting W_{i}^{A} to s_{-1} state.
- We cancel 1 by enumerating 1 AGREEMENT
- Enum b_{1} canceling (c_{1} but not $Y_{i}{ }^{[\leq 2]}$. Enum a_{1} VICTORY

It's never that simple

- When we see q enter W_{i}^{A} we have to choose between keeping our options open or jumping back to agree with a long past stage $s_{k}-1$ at the cost giving up change to agree with intervening $s_{k^{\prime}}-1, k^{\prime}>k$
- We must decide how to respond with Y_{i} immediately after enumeration. Enemy can decide what set $W_{i^{\prime}}^{A}$ to enumerate into next based on our choices so far.
expansionary stages before victory. isn't much different than considering more sets W_{i}^{A} with Γ_{i} of higher priority.

It's never that simple

- When we see q enter W_{i}^{A} we have to choose between keeping our options open or jumping back to agree with a long past stage $s_{k}-1$ at the cost giving up change to agree with intervening $s_{k^{\prime}}-1, k^{\prime}>k$
- We must decide how to respond with Y_{i} immediately after enumeration. Enemy can decide what set $W_{i^{\prime}}^{A}$ to enumerate into next based on our choices so far.
Turns out clever enemy can beat most obvious ways to try and ensure agreement with the past.
expansionary stages before victory.
isn't much different than considering more sets W_{i}^{A} with Γ_{i} of higher

It's never that simple

- When we see q enter W_{i}^{A} we have to choose between keeping our options open or jumping back to agree with a long past stage $s_{k}-1$ at the cost giving up change to agree with intervening $s_{k^{\prime}}-1, k^{\prime}>k$
- We must decide how to respond with Y_{i} immediately after enumeration. Enemy can decide what set $W_{i^{\prime}}^{A}$ to enumerate into next based on our choices so far.

Turns out clever enemy can beat most obvious ways to try and ensure agreement with the past.

- We give a second priority argument to bound number of $\mathscr{R}_{j, e}$ expansionary stages before victory.
- Turns out that considering more than one element (e.g. all $x<s_{-1}$) isn't much different than considering more sets W_{i}^{A} with Γ_{i} of higher priority.

Final Notes

- Lots of open questions regarding REAsets. Come and play!
- Still lots of easy to state open questions (I'm kinda obsessed with existence of minimal ω-REA arithmetic degree but I keep running into nice problems for small $n n$-REA sets)
- My rec-thy package for $\operatorname{AT}_{\mathrm{E}} \mathrm{X} 22$ is at an early beta stage and feedback is welcome.

References I

[0] Cholak, Peter A. and Peter G. Hinman (Oct. 1994). "Iterated Relative Recursive Enumerability". en. In: Archive for Mathematical Logic 33.5, pp. 321-346. ISSN: 0933-5846, 1432-0665. DOI: 10/cxwp7d. URL: http://link.springer.com/10.1007/BF01278463 (visited on 12/18/2018).
目 Jockusch, Carl G and Richard A Shore (Feb. 1983). "PSEUDO JUMP OPERATORS. I: THE R. E. CASE". en. In: Transactions of the American Mathematical Society 275.2, p. 11. DOI: 10/fdstv2.
国 Soare, Robert I. and Michael Stob (1982). "Relative Recursive Enumerability". en. In: Studies in Logic and the Foundations of Mathematics. Vol. 107. Elsevier, pp. 299-324. ISBN:
978-0-444-86417-8. DOI: 10.1016/S0049-237X (08) 71892-5. URL:
https:
//linkinghub.elsevier.com/retrieve/pii/S0049237X08718925 (visited on $04 / 17 / 2019$).

